Sustainable Renovation

Improving homes for energy, health and environment

Chris Morgan
A SEDA guide to best practice, funded by the Pebble Trust
Sustainable Renovation

Improving homes for energy, health and environment

Acknowledgements

This publication was initiated and almost entirely funded by The Pebble Trust, based on the Black Isle near Inverness. The Pebble Trust is a Scottish charity established in 2014. It has a vision of a more sustainable, equal and low-carbon society, where constraints on fossil fuels lead to a more localised economy with stronger, more resilient, communities, and where human activities take account of climate change and the wider environment. The Trust supports projects in the Highlands and Islands of Scotland while exceptional projects that have an impact across the whole of Scotland may also be considered.

The website address is www.thepebbletrust.org

Aware of the need to increase the impact of this work, The Pebble Trust agreed to co-host the publication with Scottish Ecological Design Association (SEDA) which has an existing portfolio of guidance on sustainable design. SEDA provided some funding for the project and this guide can be found among others at their website: www.seda.uk.net

The guide was largely conceived and written by Chris Morgan, Director at John Gilbert Architects in Glasgow. Chris is a registered and chartered architect, a certified Passivhaus designer and additionally certified in Building Biology (Buildings and Health) and Permaculture. He was chair of the Scottish Ecological Design Association and is one of four architects in Scotland accredited to ‘Advanced’ level in Sustainable Design. Chris is a design review panellist for Architecture + Design Scotland.

A small group of experts was asked to act as an advisory board and has given a good deal of their time to help advise on, and shape the guidance. These are:

Pebble Trust Steering Group: Penny Edwards, Martin Sherring, Nicholas Gubbins, Neil Sutherland, Jo Cumming & Stephen Carr
Existing Homes Alliance: Elizabeth Leighton (who also wrote the chapter on recent legislation)
SEDA: Richard Atkins
Historic Environment Scotland: Roger Curtis
Sustainable Traditional Buildings Alliance: Neil May
Energy Agency: Liz Marquis

We are very grateful to the Estate of Norman Thelwell for permission to reproduce a few of his cartoons.

Brigit Luffingham and Gillies MacPhail of John Gilbert Architects coordinated the layout and produced the detail drawings respectively. All images are copyright John Gilbert Architects except where stated.

A SEDA GUIDE TO BEST PRACTICE, FUNDED BY THE PEBBLE TRUST
FOREWORD

We are both proud to introduce this guide on Sustainable Renovation. As Directors of The Highland Council with responsibilities for housing, planning, and building standards, we understand the significance of good housing as a foundation for our lives. Our homes are the places where we find refuge, raise our families, celebrate, and relax.

The delivery of energy efficiency improvements to homes across Scotland has quite rightly been classified as a national infrastructure priority. This reflects both how good housing can play a key role in tackling climate change by reducing energy consumption, and how inefficient housing can contribute to fuel poverty.

This situation is at least as crucial in the Highlands as anywhere else in Scotland. Our 100,000 homes shelter us from high winds, rain, snow, and a range of temperatures. We use a variety of fuels to heat our homes, from natural gas, heat pumps, and electric systems to wood, biomass, and peat. Up to 55% of households in the Highlands are living in fuel poverty. There is therefore a great deal to gain throughout the region by properly insulating our houses, reducing the energy bills in our communities, and better understanding how our homes work.

This guide is especially encouraging and insightful in how it uniquely recognises how renovation works require careful workmanship, and much closer engagement with occupants. Installing insulation and double glazing, for example, without understanding and addressing their effects on the house as a whole, such as air flow, has the potential to cause unintended consequences. This can negatively impact residents’ comfort or health, such as poor ventilation or moisture build-up resulting in mould.

We hope this new publication serves as an important and useful guide for a wide range of people – from individual householders, to architects, building trades, housing associations, and developers.

We are proud that this work has been developed through support from the Highlands. By putting this different approach into practice, we can make homes in the Highlands, and across Scotland, more energy efficient, and better for our health, the environment and our communities.

We hope you enjoy learning from this guide as much as we did.

Stuart Black
Director of Development and Infrastructure
The Highland Council

William Gilfillan
Director of Community Services
The Highland Council
Contents

Acknowledgements
Foreword

1 – Introduction 1

1.1 Aim of this Guide 1
1.2 A Different Approach 2
1.3 How to Use this Guide 3
1.4 Caveats 3

2 – Context 5

2.1 Scottish Policy Context 5
2.2 Retrofit Building Science 7
 - Heat
 - Air
 - Moisture
 - Comfort
2.3 People and Perspective 17
 - Perspective
 - People and Circumstances

3 – A Different Approach 21

3.1 Beyond Energy Efficiency to a Balanced Approach 21
 - Climate Change is Not the Only Issue We Face
 - The Performance Gap and Building Performance Evaluation
 - Unintended Consequences and the Need for a Balanced Approach
3.2 Reality and the Design and Build Process 27
 - Modelling vs Reality
 - Quality, Coordination and Inspection in Construction
 - Moisture
3.3 Occupant Engagement 31
 - Engagement, Understanding and Controls
 - Recommendations
3.4 Retrofit and Conservation 33
 - Different Construction Principles and Materials
 - Maintenance
 - Significance and a Good Survey
3.5 A Different Approach 37
4 – WORKS

4.1 Maintenance
- The Importance of Maintenance
- Roofs
- Walls
- Windows
- Common Stairs
- Common Repairs and Responsibilities

4.2 Airtightness (Draughtproofing)
- The Importance of Airtightness
- Airtightness and ‘Stuffiness’
- Suitable Airtightness Targets
- Achieving Airtight Retrofit Buildings

4.3 Space and Time
- Space
- Time

4.4 Roofs and Ceilings
- Lofts – Insulation at Ceiling Level
- Insulation at Rafter Level

4.5 Walls
- Cavity Wall Insulation
- Solid Walls: Internal Insulation (IWI) vs External Insulation (EWI)
- Internal Solid Wall Insulation (IWI)
- External Solid Wall Insulation (EWI)
- Timber Frame Retrofit

4.6 Windows & Doors
- Openings in Historically Sensitive Buildings
- Openings in Non-Sensitive Buildings

4.7 Ground Floors
- Suspended Floors
- Insulating from Below
- Insulating from Above
- Solid Floors

4.8 Heating Approach
- Space Heating
- Water Heating
- Cooking

4.9 Ventilation
- The Need for Ventilation
- The Inadequacy of Most Modern Ventilation Systems
- Existing Extract Fans with Openable Windows / Trickle Vents

4.10 Lighting and Appliances
- Electrical Energy Efficiency
- Wider Sustainability Issues
- Renewables

5 – RESOURCES AND GLOSSARY
1 – INTRODUCTION

1.1 AIM OF THIS GUIDE

The aim of this guide is to help everyone involved in the renovation of homes and housing, and to improve the work undertaken. By improve we mean to increase the efficacy of efforts to reduce energy consumption, but also to reduce the problems that this work sometimes causes.

The timing is important because Scottish Government is investing heavily in retrofit, and envisages a Scotland where we are all living in nearly zero carbon homes by 2050. Regulation has been changed to ensure all properties will be included in this vision but there are real challenges ahead, particularly in relation to historic properties. A huge amount of effort and money will be spent on renovating homes across Scotland in the next few years. The potential to improve energy efficiency and reduce fuel poverty is significant, but this guide sets out a number of aspects we believe need to be improved in order to fulfil the potential of this investment and to avoid wider problems, and costs, in the long term.

There is no doubt that current efforts to save energy are making a huge (and positive) difference, saving energy and improving comfort for thousands, but the impulse for writing the guide was the realisation that many renovation projects are not as effective at saving energy as they could be. Moreover, they can create a number of unintended consequences which have negative effects on the comfort and health of occupants, the condition and durability of the buildings, and in some cases on the conservation value of the buildings. There are many reasons for this, and in this guide we aim to show how conservation of older buildings, energy efficiency, health and comfort can all be achieved through a more careful and balanced approach.

In this guide we have focused on domestic projects, that is, individual homes and larger scale housing projects. Many of the principles discussed herein can be applied to other buildings, but the range of specific issues multiplies with more specialist building types making it difficult to adequately address them.

Some of the principles and details discussed may also be useful in new buildings, but the intention is to concentrate on existing buildings. Many of the examples shown are ‘traditional’ (pre-1919) solid-walled buildings but the guide also addresses more recent types of building. The most important difference between building types is usually the choice of wall construction. We discuss both external and internal insulation to solid walls, cavity walls and the more recent timber frame construction. Roof construction has changed very little for the vast majority of domestic buildings but there are two quite different places to put insulation when renovating, while there are are really only two types of floor construction: solid or suspended and these are both discussed in the section on floors.

There are a number of terms used to describe the upgrading of existing buildings. In smaller scale domestic projects, the word ‘renovation’ tends to be used. Larger scale works by councils and housing associations are normally referred to as ‘retrofit’ and this term is used in government and policy circles as well. In this guide we have used the terms interchangeably.
1.2 A Different Approach

This guide is not like other guides to renovation. In Chapter 3, the reasons for this are discussed in detail but it is worth emphasising the point here because of the potential to cause confusion. There are four primary differences but these can be broken down into ten separate aspects as described below.

Most guidance on renovation is exclusively or almost exclusively focussed on energy efficiency. We have seen too many examples of how this focus can cause problems elsewhere. The first important difference between this guide and others therefore is that we aim for a balance between energy efficiency, the comfort and health of occupants, and the durability and condition of the building fabric. This covers the first three of the ten points listed below.

Broadening the focus beyond energy efficiency does not mean we do not value energy efficiency. The opposite is true. The difference is that while most conventional guidance is based on the modelling tools used to calculate energy consumption in buildings, our guidance is based on observations and investigations of ‘real’ energy consumption, measured and monitored in real buildings once completed and inhabited. We are interested in what actually improves energy consumption, rather than what purports to improve energy consumption on a spreadsheet. This interest in reality covers the next three points listed below.

Almost all studies into how buildings perform in reality acknowledge that the way people behave in buildings makes as much, if not more difference than the technical aspects of the buildings. Thus in this document we place considerable importance of engaging with people. Lastly, in this guide we acknowledge the value that the conservation or heritage sector has brought to the understanding of how to work with existing buildings. There is a great deal written about this, but it is usually confined to publications aimed at those who own or work with listed buildings, whereas the advice is relevant to most existing buildings. This covers the last three points listed below.

In summary, there are ten ways in which this guidance differs from the majority of advice currently available. Our guidance:

1. seeks a more effective approach to energy efficiency
2. takes account of the comfort and health of people who live in buildings
3. avoids problems which could lead to building fabric decay and deterioration
4. favours details based on real, measured performance, rather than modelled predictions
5. highlights the need for more co-ordination and inspection, and for more careful workmanship
6. integrates considerations of moisture in buildings
7. proposes a much closer level of engagement with people, particularly occupants
8. acknowledges the different construction principles and materials found in older buildings
9. places value on maintenance and the need to re-integrate this into design and building management
10. suggests that the principle of respecting the ‘significance’ of individual buildings which comes from the conservation sector should be integrated into routine retrofit assessment.
We highlight the differences between our guidance and conventional guidance and we explain the reasons for this so that the reader can understand the breadth of opinion on the subject and can form his or her own view as to how best to proceed.

As this document was being finalised, a draft version of the Publicly Available Specification (PAS) 2035 was issued for consultation by the British Standards Institution, and is due to be published in February 2019. This draft contains many of the suggestions presented in this document and we believe it offers a worthwhile methodology for a more sustainable, responsible and effective retrofit approach for the UK.

1.3 How to Use this Guide

The guide is divided into four chapters. The first three present the broader context and reasons for a different approach to retrofit, while Chapter 4 looks in more detail at how these changes can be put into practice.

After this introduction, Chapter 2 lays out some important context for retrofit practice in Scotland, while Chapter 3 discusses the four principles (which form each section) and within those the ten aspects summarised above.

Chapter 4 looks at a range of building elements and where relevant explains how the differences link back to the points raised in the first section. Those interested in one area only (e.g. windows) can skip straight to that section without reading all of the supporting and background information. Because situations can vary so much many guidance documents will give generic guidance only, whereas we have prepared quite specific, and illustrated, recommendations. Clearly these will not always suit the condition perfectly, and there are many solutions to each problem, but our view is that committing to, and illustrating what we believe to be the best solution in detail is of more value for most readers.

Chapter 4 is followed by a references section which includes a bibliography and glossary.

1.4 Caveats

Every building is unique and the variety of spaces, arrangements and details to be found means we cannot possibly attempt to describe or illustrate all circumstances. We have described what we hope are a reasonably representative sample of situations in the hope that the principles discussed will help the reader in their own home or project.

We cannot take responsibility for design and installation decisions taken as a result of following the ideas described in this guide. We would always recommend that you use a suitably qualified designer and/or contractor but we hope that using this guide gives you a better understanding of the issues, and the sorts of questions to ask.

We have provided a list of further sources of information along with a little description in some cases to help direct readers to the most appropriate resource.
This chapter looks at three aspects of the wider picture of retrofit:
• the government policy context which is shaping and funding the majority of retrofit practice in Scotland
• the science behind both the reasoning and detail of the proposals contained in this guide
• the need to take a step back at times, and develop a more nuanced view in order to achieve truly best practice

2.1 Scottish Policy Context

This guidance goes to some lengths to emphasise that there is more to renovation than energy efficiency, however there is no doubt that it is the fuel poverty and climate change agenda which is currently driving forward retrofit policy and programmes in Scotland. Therefore, it is worthwhile having a little understanding of the policy context for this, and the likely expectations going forward.

There has never been a greater need for a guide on how to undertake sustainable home energy upgrades. The twin imperatives of tackling climate change and eradicating fuel poverty mean the quality of our housing is a major priority for society. In addition, the potential to be less vulnerable to fluctuating fuel prices and foreign sources of energy is desirable in an unpredictable global context.

While energy policy is reserved to the UK, Scotland has devolved powers for energy efficiency and has developed significant programmes on fuel poverty and energy efficiency to address these concerns. Most recently the Scottish Government has responded to this need by designating the energy efficiency of buildings a National Infrastructure Priority. The cornerstone of this infrastructure priority is the Energy Efficient Scotland Programme which aims for “our homes and buildings to be warmer, greener and more efficient” by 2040 and “near zero carbon” by 2050.

The Energy Efficient Scotland routemap, below, sets out a phased approach across housing tenures to reach near zero carbon housing where feasible by 2050. The aims are to remove poor energy efficiency as a driver of fuel poverty and to reduce greenhouse gas emissions through energy efficiency and decarbonised heat supply.

The long term standard for all buildings will be to achieve Energy Performance Certificate (EPC) band C by 2040 where technically feasible and cost-effective (over the lifetime of the measures). Within this, different tenures will be treated differently and these are set out in the adjacent boxouts.

It is worth noting that the Energy Efficient Scotland Programme applies to all buildings, and to heat as well as energy efficiency. Therefore, there will be an interest in combining solutions for domestic and non-domestic properties where possible, and reducing heat demand while transitioning to decarbonised heat sources. Thus, UK energy policy will have a significant impact on the achievement of Energy Efficient Scotland standards due to decisions regarding decarbonising heat and the future use of the national grid and gas network.
The programme will provide an “end to end energy efficiency service” – from initial advice and support from the national energy advice service, Home Energy Scotland; grants (for fuel poor households) and incentives for installing quality assured measures; and follow up advice on how to best use the measures to achieve maximum energy saving and comfort.

The programme will include work on protecting consumers, building skills and capacity, including monitoring and evaluation, and ensuring additional support is available for traditional buildings and those properties which are listed or in conservation areas.

The Draft Fuel Poverty Strategy recognises the benefits energy efficiency can bring to health and well-being. NHS Scotland has pledged to assist – working with national and local health professionals – with making referrals for energy efficiency advice.

Phone Home Energy Scotland or visit the website for information on support that is available nationally or through your local authority.
2.2 Retrofit Building Science

Every building is unique, because of its location, microclimate, the materials with which it was built, the systems installed to keep it warm, the changes made over the years and the way that people live and work in it. In addition, buildings are genuinely complex; changing one element can alter many other aspects, some of which might not be obvious.

Buildings are being retrofitted without sufficient understanding of this complexity. Government policies understandably focus on large scale goals (carbon emissions and fuel poverty reduction), but those tasked with enacting these policies are rarely expert in building science and people living and working in buildings tend to be sensitive to some, but not all of the risks involved.

There are only three main agents at work in all of this, technically speaking; heat, air and moisture, but it is their interrelationships – and their interactions with buildings and occupants – which create the complexity. For this reason it is critical to understand a little of how they operate, and how they affect each other, buildings and people.

Heat

Heat is energy which is constantly seeking to dissipate, that is, spread out until everything is the same temperature. Thus it is always flowing from warm (more energy) to cold (less energy). In temperate countries like ours, we need our houses to be warmer than outside most of the time and so we artificially heat them, and then have to find ways of slowing down the flow of heat to the outside world.

Conduction, Convection & Radiation

Heat moves in three ways: conduction, convection and radiation. Conduction is the flow of heat through a solid material, from molecule to molecule. Generally, the closer these molecules are packed (the denser the material) the more effectively heat can pass between them. Conversely, the more they are spaced out the harder it is for the heat to flow. This is the fundamental principal of insulation which seeks to 'trap air' or in other words spread out the molecules of the solid material as far from each other as possible, separated by pockets of still air.

Different materials allow heat through to different degrees and this is known as their thermal conductivity, or lambda value. Better insulating materials have lower lambda values. To the right is a table of common materials and indicative lambda values for comparison.

The temptation when looking at tables like this and considering insulation choice is to opt instantly for the lowest number, but there are so many other variables at play that it is important to resist! Quite apart from cost (not surprisingly some of the much lower lambda materials are correspondingly expensive) there are issues such as fire resistance, performance with moisture, ease of use, durability, availability and environmental impact to consider and these are briefly discussed in the box overleaf.

The second way in which heat flows is convection. This is the flow of heat through liquids and gases (rather than solids). Because molecules in liquids and gases are free to move, convection can be very effective.

### Material	Lambda (W/mK)
Aluminium | 200
Steel | 60
Concrete | 1.4
Brick | 0.8
Wood | 0.13
Wood Fibre | 0.045
Expanded Polystyrene | 0.036
Mineral Wool | 0.035
Phenolic Foam | 0.022
Aerogel Board | 0.013

A scene that is familiar to thousands of households. The mould is due to a combination of excess moisture, cold surfaces and inadequate ventilation. It will impact on the health of the people using that room, and, over time, the condition of the building fabric.
Molecules move according to pressure differences which can be natural, such as wind or differences in density or temperature, or mechanically induced by fans.

Heat loss by convection is more important than many people realise because it is linked to airtightness, to thermal bypass (see below) and build quality (gaps) which are all under-represented using conventional models. One of the differences between this guide and others is that we are far more concerned to reduce heat loss by convection than is normally the case.

The third way in which heat flows is radiation. Technically, heat radiation is mainly infrared electromagnetic radiation which is short-wave radiation adjacent to the visible spectrum (light). Any object warmer than its surroundings radiates (including people) but we tend to associate it with hot objects like the sun and fire.

Because humans have evolved entirely with the sun, and for many hundreds of generations with fire, there is no doubt that the human body has adapted to respond well to radiant warmth. For this reason we place greater value on this form of heating whereas conventional guidance pays it little attention. This is discussed more in the section on heating.

Heat Loss through Buildings

Buildings lose heat in relation to their location and surrounding microclimate, but for a guide on renovation, our main concerns are the basic mechanisms of heat loss due to the characteristics of the building itself.

Insulation Considerations

- Lambda value indicates how well the material resists heat loss and is important, but not the only consideration.
- Even tiny gaps within or around insulation will allow heat to bypass, so it has to be fitted without any gaps at all. This is not easy in practice, and so the practical difficulties of ensuring a snug fit between other components like a timber frame – using materials which have a little ‘give’ – is often as important as lambda value.
- Because it is hard in practice to avoid gaps, it’s worth trying to add air barriers (but not moisture barriers) either side of – and tight up against the insulation. These prevent air entering and so gaps within the insulation are less of a problem. With rigid boards, taping all joints will have a similar benefit.
- When using fibrous insulation like mineral wools or sheepswool, cold air can flow across and through the outside face. Although not penetrating to the inside, this ‘wind-washing’ can wick heat away and where possible should be prevented through the use of a membrane.
- There are a number of health concerns about some synthetic insulation materials. These are controversial, but SEDA has always sought to use the precautionary principle in such matters and where possible (affordable), we suggest using natural materials.
- Natural insulation materials (sheepswool, woodfibre, flax, hemp, cork etc.) tend to be ‘hygroscopic’ which means they can absorb, safely store and desorb moisture. This has several advantages, including the ability to protect adjacent (usually timber) structural elements from excess moisture. They are also ‘breathable’ meaning moisture can pass through safely and dissipate where designed as part of a ‘breathable’ system.
- On the whole, synthetic insulation materials (mineral wools and plastic foamed products) tend to have high embodied energy (which is worse) relative to the natural insulation options.
- There are some recycling arrangements in place for some synthetic insulation materials, but it is not always economic to undertake. Natural insulations are usually biodegradable or compostable and so represent a zero waste option.
- Insulation needs to be installed in a wide variety of situations and some of these have quite specific requirements, for example related to fire (high rise buildings), high compression resistance (under the ground floor slab), acoustics (between properties) or vapour resistance (around water pipes). Clearly, these requirements might outweigh any of the considerations above.
- There are many commonly used insulation products such as boards, rolls and batts, and the bulk of our guidance relates to these. However there are also some less common ones, such as insulating plaster, loose fill granules, fibres or beads and sprayed-on foams, and although not necessarily mentioned, these may be appropriate in some situations. The important thing to consider is the long-term performance as well as any more obvious or immediate advantages.
- Thermal Transmittance
While thermal conductivity (lambda) measures the ability of individual materials to resist heat, walls, roofs and even single components like windows are made of more than one materials so it gets more complicated. Thermal transmittance is how a collection of different materials in combination resist heat together, so it is possible to get a single number (U-value) for any combination of materials forming a wall, roof, window, floor etc. This number is what the building regulations need to know to ensure that each element of the building is adequately insulated.

The total heat loss of the building is then worked out by multiplying the area of the various elements (roof, wall etc) by the U value of each. For compliance, certain temperature differences between inside and outside are assumed so that all assessments are comparable. It is worth noting that it’s not just the thermal transmittance of the building element that is important. Two buildings with the same internal area might have very different layouts and one might have more external surface area, leading to greater heat loss. For this reason, it makes sense to keep buildings compact to minimise heat loss.

- Thermal Bridging
Thermal bridging occurs where one part of the construction is more conductive to heat than another part. The overall U value might say one thing, but in these areas the actual heat loss is worse. An example might be in a timber frame wall where for structural reasons there are several timber studs together (and therefore no insulation), or in a retrofit where internal wall insulation is omitted from some areas because they are difficult to access. Thermal bridges have their own value (psi, measured in W/mK) which needs to added into any overall heat loss equation to give an accurate picture of the whole building.

In the past, these anomalies were generally ignored, or at best treated with generic ‘get-arounds’. Nowadays more people are aware of the issue and it is beginning to be taken more seriously. There are two types: repeating and non-repeating. Repeating thermal bridges as their name suggest form repeating and generally regular and known points, such as where fixings penetrate the insulation in external wall insulation. These fixings transmit more heat than the insulation around them, so a psi value has to be established, multiplied by the number of fixings and the total added to the overall heat loss of that section of wall.

Non-repeating thermal bridges are also called linear thermal bridges and tend to occur where elements of construction meet, such as at the junction of floor and wall, wall and roof and around openings. The problem often occurs because certain elements are needed for structural reasons and it is then difficult to fit enough insulation around them. A significant amount of what constitutes good practice revolves around identifying and resolving these thermal bridges. This is because they allow more heat out of the building, but more importantly, they create relatively cold internal surfaces. These can lead to condensation, stains and mould, with unwelcome implications for human health and the durability of the building fabric.

- Thermal Bypass
Thermal bypass is a less known cousin of air leakage, discussed below. With thermal bypass, air gets in or out of the building fabric but only part of the way. Because buildings tend to have lots of cavities, this air can cause havoc once it's inside the building fabric, cooling the building fabric from within or depositing warm, moist air in places that can't be seen or reached.
The significance of thermal bypass has only recently come to light due to the efforts of building performance practitioners. In one study, ventilated party walls between terraced homes and flats meant measured heat loss from the homes was far higher than anticipated. Other examples include ‘wind-washing’ where fibrous insulation materials do not perform as well as expected due to air movement on their outer edge drawing warmth from them. This has led to the proposed use of a ‘wind-barrier’ to the outer face of insulation, as shown in the loft insulation described in Section 4.4.

Because thermal bypass, like air leakage, exploits gaps in construction as much as cavities, it is also relevant to issues of quality and workmanship on site. Many construction anomalies picked up by thermographic cameras are assumed to show thermal bridging whereas they often show cold air movement indicating a gap somewhere there shouldn’t be i.e. thermal bypass.

- Thermal Mass
Thermal mass is the capacity that all materials have to absorb heat energy and store it, releasing it again when the surroundings are cooler. It can be put to very good use but while simple in principle, can be quite complex in practice. The practical implications of working with thermal mass are discussed more fully in the section on heating.

Air

Like heat energy, air is moving all of the time across the globe, driven by both horizontal and vertical pressure differences. At the small scale of buildings these two pressure differences are known as ‘wind-driven’ and ‘stack effect’.

‘Wind driven’ pressure is where the wind is blowing in one direction across the building, creating positive pressure on one side and negative pressure (suction) on the other (leeward) side. This differential can be exploited naturally by opening windows on both sides of the building, allowing air to move through the house. This is called ‘cross-ventilation’ and is very effective at providing fresh air where used.

The ‘stack effect’ links air movement to temperature. Warmer air is less dense and tends to rise, and where this occurs, cooler air comes in below to fill the vacuum. Again, this phenomenon can be harnessed to form a very effective ventilation system. In warmer weather, windows (or roof lights) opened at high level will allow warm air to rise up and away, drawing in cooler air from low level windows (ideally to the north) and keeping the building and the occupants cool.

Ventilation is the term used to describe air movement which is designed, intentional and controllable. Every building must have this in order to ensure an adequate supply of fresh air and an adequate way of removing stale / moist air. In older buildings the main mechanisms employed were openable windows and chimneys / fires / stoves which worked in concert with cross and stack ventilation as noted above. These two mechanisms remain in many older buildings although chimneys are often blocked, while in most modern buildings, ventilation is also managed through the use of mechanical extract fans with trickle vents in windows providing the replacement air. This is a regulatory requirement in all new buildings.
Whether natural or mechanical, the purpose of ventilation is fourfold:

- to remove excess moisture
- to remove unwanted pollutants from internal activities (including carbon dioxide)
- to provide oxygen
- in warm weather, to cool occupants.

There is some debate about how much ventilation is required: it can be derived by considering how much (stale / moist) air needs to be removed from a space, or by considering how much (fresh) needs to be provided – in other words by considering the extraction or supply rate.

The problem, however, is that not all air movement in buildings is designed. Much of it is not designed, not anticipated and not particularly welcome! **Infiltration** is the term to describe air getting in and out of the building which wasn’t designed, not intended, nor controllable. It is due to gaps and cracks in the building and around things like services penetrations and so is affected by the quality of construction. It is driven by wind pressure and temperature differences just the same as ventilation but, unlike ventilation, can’t be controlled and leads to a number of problems, like heat loss. Infiltration is also known as air leakage or more commonly as draughts, while the solutions are known as addressing airtightness, reducing air leakage / permeability, or simply as draughtproofing.

The term most commonly used within the UK industry is ‘air permeability’ and the air permeability of a building is measured in m³/hr/m² at a standard pressure difference of 50 pascals. That is, the volume of air (m³) escaping per hour for each m² of external surface area. In recognition of the problems it can cause, new buildings now need to be tested to ensure a suitable level of air permeability. The importance of airtightness is discussed in more detail in Section 4.2 which also addresses some of the controversies surrounding the subject and looks at what can be done to reduce infiltration.

Moisture

Like heat energy and air, moisture, in its various forms, is constantly on the move. It flows through the environment at large, interacting with buildings in different ways depending on its state. Unlike heat and air movement however, most people tend not to be particularly sensitive to changes in moisture levels and so the issue remains unnoticed until its effects - often damp and mould - bring it into focus. Understanding moisture in buildings however is critical in order to ensure not only an energy efficient project, but a healthy indoor environment, and a robust building envelope. Moisture appears in three different states depending on its temperature: gas, liquid or solid.

Water Vapour

Water vapour is water in its gaseous form and is almost always present in air, both inside and outside. The amount of vapour in air at any point is known as the absolute humidity level and is measured in grams per cubic metre (g/m³). When air is carrying as much water as it can, it is said to be saturated and beyond this level the vapour will condense out of the air, i.e. change to its liquid state.

However, the amount of vapour that air can contain increases with temperature and so in practice it tends to be relative humidity (RH),
1. breathing & perspiration
2. clothes drying
3. cooking
4. portable gas heating
5. bathing
6. kettles
7. dishwashing
8. plants (& soil)
9. floor / surface washing
10. washing machine / tumble dryer (depending on venting arrangement)
11. leaks in waste drainage (e.g., bath connection or toilet cistern) or overflowing bath / basin
12. plumbing leaks - water supplies or central heating
13. burst (frozen) pipes in uninsulated areas
14. gutters leaking / blocked / overflowing or downpipes leaking / blocked e.g., at fixing
15. gullies blocked / ground nearby saturated
16. rain direct onto walls, in via gaps / cracks in pointing or render
17. rain direct through roof, via missing slates / leaking flashings etc.
18. groundwater via inadequately waterproofed low level walls or floors
19. ‘rising damp’ driven up walls
20. rain via uncapped chimneys / flues / flashings etc.
21. condensation in wet rooms / cold surfaces / poor ventilation
22. condensation in colder areas / cold surfaces / poor ventilation
23. ‘built-in’ moisture from construction
24. flooding / high water tables
25. high moisture levels to shaded / unventilated areas (overgrown / to north)

Common moisture sources in a building.
Water vapour sources shown in green, liquid water sources shown in blue.

Water and Vapour Flow

There are two sets of moisture movement in any home as indicated in the drawing above. The first relates to rain and snow and the techniques to keep this water out have not changed much over the years. Modern

Liquid & Solid Water

Water in liquid form mostly affects us as rain, but also when water pipes leak, groundwater seeps upwards into walls and floors and importantly, as condensate. Solid water takes the form of snow and ice. Snow tends to be handled in the same way as rain although it can settle and so adds to the weight loads on roofs, and ice can cause spalling when it forms near the outside face of masonry.

An important part of building design is given over to keeping rain safely away from the vulnerable parts of the construction. Thus roof finishes, flashings, rainwater goods, renders and damp proof courses and membranes are all routinely installed to keep buildings dry. However, every one of these is subject to deterioration, movement and weathering and so maintenance becomes a critical part of managing moisture in buildings. The diagram above shows the range of potential sources of moisture inside a building. Those in vapour form from inside the building are shown in blue-green, while those in (liquid) water form, and mainly from outside are shown in blue.

Described as a percentage of the total capacity at that temperature, rather than absolute humidity which is generally used when describing water vapour in the air. The difference in carrying capacity of vapour is quite dramatic; air at -10°C can carry 2.3g of water, while air at 25°C can hold ten times more vapour than air at -10°C.
methods and materials are as effective as traditional methods but tend to rely less on regular maintenance, which is where the problem can sometimes arise as retrofit projects – by definition – involve older buildings which tend to need regular maintenance more than some modern designs.

The second relates to water vapour and mainly affects the inside of the home. This is being heated to a higher temperature than outdoors (so the air within can contain more moisture) and a fair bit of moisture is being generated (from the various sources noted above), creating a situation where warm, moist air is exerting a higher vapour pressure which is then ‘pushing’ outwards against the building fabric.

There are two sets of risks associated with this outward expansion of warm, moist air. The first is to the internal contents and finishes of the home, and the second is to the fabric of the building itself. An example of the first type of risk is where air at 25° and 100% RH inside a house encounters a surface sufficiently cold to cool the adjacent air. In a typically heated home, surface temperatures of around 12° or below will present this risk. Common places include a window frame, areas behind large furniture where air circulation is poor, or somewhere with a thermal anomaly – missing insulation, a thermal bridge or air gap where cold air is getting in and cooling the internal surfaces. This colder surface cools the adjacent air which is already at 100% RH so has no more capacity to contain the water and it condenses out, going on over time to form stains and potentially mould.

The second risk is known as interstitial condensation and is essentially the same process of warm, moist air cooling in contact with cold surfaces, but in this case it happens within the building fabric. Warm, moist air from inside escapes through cracks in the internal surfaces, or by diffusion through materials, and works its way outwards until it reaches materials and surfaces near the outer face of the wall which are colder. At this point the excess moisture condenses. If this happens on or near timber, there is a risk of decay, near metal there is a risk of corrosion, and if in masonry, then it can freeze, causing spalling on the outer faces.

Until perhaps a generation or two ago, this outward pressure of vapour pressure was not as strong (fewer sources of moisture and lower temperatures) and the general draughtiness of buildings, as well as the fact that the fabric of the building was capable of both absorbing and diffusing moisture, meant that this phenomenon was less of an issue. In buildings built or upgraded within the last 40 years or so, and with today's lifestyles, it is much more of a problem. In general, we keep homes warmer, we generate more moisture and the materials and construction of modern homes are much more vulnerable. This moisture can push its way out through the building fabric, cooling and condensing against impervious materials throughout the construction, causing all manner of problems, most importantly the decay of any organic materials therein, such as structural timber frame!

To prevent this, most modern homes employ two techniques to keep buildings safe from internally generated moisture damage. The first is to ensure that wet rooms (kitchen, bathroom, utility rooms etc) are fitted with fans which extract any moist air out ‘at source’. The second technique is to ensure that the whole inside of the house is covered with a vapour barrier (VB) or vapour control layer (VCL) which prevents moisture getting into the building fabric. By and large these techniques work, but they are not without their weaknesses. Fans will only remove moisture if they are operational, and building performance investigators have often found fans to be broken, not extracting effectively or switched
off by irritated occupants who dislike the level of noise produced. Equally, vapour barriers only work if they are continuous, and there are countless examples of this not being the case, particularly where the barrier membrane is broken by electrical switch and socket boxes and other service penetrations.

One way to resolve this problem in modern construction is to learn from traditional construction. 'Breathing walls' are a relatively recent technique which take as their starting point the idea that - like traditional construction – if the construction is intrinsically safe from decay, then there is less risk overall, and the techniques designed to protect the construction from moisture (extract ventilation and vapour barriers) become less critical. Breathing walls make construction safer by ensuring that the materials used throughout can safely contain and store moisture, and importantly, allow moisture to safely pass through them to outside.

Different materials can also absorb and then desorb (let out) moisture safely. This is known as hygroscopicity. Natural material insulations like those made from woodfibre, sheepswool, hemp and flax etc. are highly hygroscopic and can absorb and store moisture safely, letting it out again and allowing it to pass through, whereas this is not the case with more highly processed insulation materials. Equally, earth and lime mortars and plasters can 'manage' moisture whereas more conventional gypsum and cement mixes cannot, or at least not to the same extent. These characteristics are exploited in breathing construction.

Water vapour moves with air but it can also move through solid materials, and breathing walls make use of this capacity. Movement through materials is known as diffusion and takes place under vapour pressure. The ability of materials to resist the flow of water vapour is measured by their vapour resistivity which has units of Ns/gm (Newton seconds/gram metre). The larger the number the greater the resistance to vapour flow. The resistivity is the intrinsic level for each material but this is multiplied by the thickness of a material or component to give the vapour resistanc, which has units of Ns/g, sometimes also noted as MNs/g and this is the unit most commonly used to describe vapour flow through materials. Breathing walls, roofs and floors use materials with quite specific vapour resistance which decreases from inside to out. This means, in effect, that any moisture finding its way into the building fabric, will find it increasingly easy to escape outwards.

There is another aspect of moisture in the air which is worth mentioning. The diagram left shows that a range of common risks to human health are increased at both extremes of relative humidity (RH). In larger commercial buildings, RH is managed through complex air handling and conditioning equipment but this is rarely an option for houses. Apart from simply ensuring that there is adequate ventilation at all times (which will tend to ensure that higher levels of RH are avoided), it is also possible to passively buffer the humidity using the sort of natural, hygroscopic materials discussed above. These will absorb water vapour when RH levels are high and desorb it again when the air is drier, helping to balance the RH and reduce risks to the health of those in the house. This technique is usually termed ‘humidity buffering’ and has been used successfully by a number of practitioners, particularly in museums containing delicate artefacts such as parchment or other humidity-sensitive materials.
Comfort

It should be clear from the previous section that temperature and heat loss, air flow and moisture are all interrelated; change one and you alter the other two, with knock-on effects on the building and the people in it. Until about ten years ago, most discourse on retrofit was restricted to heat loss and insulation. In the last ten years most people in the industry have become more aware of the need to look at air movement, but in the future we need to broaden our area of focus again to include moisture, and ventilation which connects to all three.

It is important to discuss comfort because with the focus so heavily on the sorts of technical and physical changes that need to be made to buildings, it is easy to forget that it is not really buildings we are trying to keep warm – it is people.

In fact comfort is a major topic of debate, albeit mainly within the building services sector. There is an International Standard – ISO 7730 – which describes the general conditions which need to be met in buildings in order to optimise comfort levels for most people. There are broadly six components of what constitutes comfort and these are shown in the diagram below.

Most people in Scotland, having lived for many years with central heating, would consider air temperature to be the most important, if not the only parameter of comfort. After all, it is usually the only thing we get to control on our thermostats. However in fact the radiant surface temperatures surrounding us are the most important. See the section on heating for more on this but the problem for most is that we do not have a way of controlling this in most heating systems. It is also worth noting that human beings tend to feel more comfortable with warm feet and cool heads, so any system of creating comfort should strive to provide those conditions.

In the last 15 years, another approach has developed which recognises more fully that everyone has different ideas of comfort. It is called the
'adaptive comfort' approach. Whilst adaptive comfort recognises that there are some basic parameters of comfort, it acknowledges that some people can operate quite happily outside the 'normal' confines described in the more prescriptive standard. An adaptive comfort approach recognises that older, infirm and sedentary people and those from warmer countries tend to need higher temperatures. Younger, more active people will be more likely to tolerate lower temperatures and this tends also to be true for people from colder climates or who are otherwise used to being in cooler conditions. Adaptive comfort also acknowledges that even for the same person, boundaries of what is comfortable alter across seasons – we are more tolerant of higher temperatures indoors when it is warmer outside and vice versa.

The critical outcome of adaptive comfort is the need to design for personal control. People who can exert control over their immediate surroundings (opening windows, operating fans, adjusting local heating) will tolerate much more variety in their surroundings than those who have no such control and are obliged to 'put-up with' standardised, often remotely controlled conditions. This is known as the 'forgiveness factor' and takes the normally technologically driven world of building services deep into the territory of psychology and behavioural studies. In terms of designing buildings, the adaptive comfort model suggests basic parameters, then concentrates on creating opportunities for individuals to control their own environment. It is for this reason that the subject of controls is an important aspect of this guidance.
2.3 People and Perspective

How much should you spend on a retrofit project? Will the up-front costs be balanced by savings in the long run? Is your motivation to save money, or to reduce carbon emissions, or both? How do you balance keeping warm versus keeping the mould at bay? These are not simple questions to answer but it helps to have a little perspective on what is ‘normal’ or average. The short section below will enable you to assess where your household sits, and how much it is worth spending on renovation works.

In this document we have unashamedly striven to show the ‘best’ solutions to each element of building retrofit and explained our reasoning. However, we understand that circumstances do not always lend themselves to what might be ‘best’ technically. Indeed, the ‘best’ solutions in reality are those where global aspirations (carbon emission reductions, healthy indoor air quality, exemplary levels of maintenance) meet and match more local aspirations, including the specific requirements of those who live in each building and the particular circumstances of each location. Ultimately, it is only when we value these issues equally, that we can really say we have produced the ‘best’ solution.

Perspective

There are roughly six million people in Scotland and 2.5 million households. The general trend is for more houses and fewer people per household. In 2015 the average household had just over two people in it (2.16 to be precise). The most common household had one person only (889,000), closely followed by two people (846,000), with just under 700,000 household with three people or more.

The average home in Scotland is 96 sq.m (1,033 sq.feet) which is a little bigger than England and Wales where the average is 90 sq.m. The average house is about twice the size of an average flat and we sit somewhere in the middle of the table of average house size across the EU but far smaller than the USA.

The average annual Scottish heating bill (gas) is approximately £700 and the average electricity bill is around £500, making about £1,200 per year or £100 per month. In most cases, the heating component is made up of around 2/3 space heating and 1/3 water heating.

So, the average household in Scotland is about 96 sq.m, has two people in it and spends about £700 per year on heating the house and hot water.

The average house in Scotland is not very energy efficient, so there is almost always room for improvement, but the above allows you to gauge where you sit in relation to others across the country. If your bills are higher than average, but you have a larger house and four occupants, then perhaps that’s about right. If your bills are much higher, and you have a small house and live alone, then there’s clearly more reason to spend money up front, because the savings will be greater.

The number of variables that come into play can be bewildering. The section below addresses the ‘real-life’ judgements that come into play and if Scotland is to lead the way in addressing retrofit as part of a wider sustainability push – as many say we should – and if we are to move beyond generic EPC ratings and routine solutions, then these are the sorts of decisions in which the industry will need to become more skilled.
People and Circumstances

Consider an older lady living in a rural cottage in the outer Hebrides. Her heating bills are £1,000 with about £200 for electricity. Her total bills are the same as the Scottish average, but made up quite differently. Occupancy is lower than average, she doesn’t use much hot water, nor much electricity (hence small electricity bills). The cottage, albeit not exactly large is about 140 sq.m but she doesn’t use the second or third bedroom and keeps the heating off unless the grandchildren stay. She tends to keep the kitchen and living room warm but no other rooms. All of the above except the slightly larger house size would suggest that heating bills should be lower than average. She doesn’t have mains gas, so there is an oil tank in the garden which is filled by tanker. Radiators are fed by an old oil boiler. These three last facts would suggest higher fuel bills than average.

The cottage is entirely uninsulated with draughty single glazed windows, it is often windy and the cottage is fairly exposed. Technically, it is clear that the major proportion of her bills is going on space heating – even the small proportion of the house she does heat – and that there is ample reason to insulate the house and save her a significant proportion of her heating bills. With an uninsulated house and expensive fuel, its a straightforward case, and the ‘best’ solution is obvious.

However, while her children worry about the cold affecting her as she ages, this particular lady doesn’t really mind the cold, having lived with it all her life. She likes to keep the windows open. The house value in this remote area is very low and she fears that any money spent on upgrading would be wasted. She doesn’t feel the need to spend the money on herself and acknowledges that the children and grandchildren would sell the house after her death rather than move back to the island, and so any improvement work is of little value to them. She likes the house the way it is and keeps it in good condition generally. Most important of all, neither she, nor her children have a great deal of money to spare.

There is no doubt that technically the house would benefit from a significant overhaul including perhaps external wall insulation, new windows and a host of other measures, but there isn’t the money for this. She is already operating the house in a efficient way (keeping unused rooms unheated, for example and not using much hot water) so the following suggestions might suffice:

• Insulate the loft - a grant available so no cost, and keeps the bedroom warmer
• Install secondary glazing - reduce heat loss and draughts, cheap, can be removed in summer
• A new boiler / insulate all hot water pipes - again not too expensive but big gains in efficiency

* * *

Consider next a family of two parents and three teenage children who live in a fairly small terraced house (95 sq.m) in the central belt. Money is tight and the loft has already been well insulated when it was converted into a bedroom for the oldest child, but bills remain high – about £1,000 for heating (mains gas) and £700 for electricity. In addition, there is mould in a number of areas, particularly window frames, and two of the children suffer from asthmatic symptoms.

The high electricity bills can be explained by the relatively high occupancy and the large number of gadgets using electricity and needing charged overnight etc. The lights could be changed to LEDs and some appliances...
could be upgraded, but without further significant lifestyle change it will be hard to reduce that figure by much.

The heating bills on the other hand seem high for a house in which the majority of the walls adjoin neighbouring homes and there is an insulated roof. The existing double glazing is quite old and could be replaced, which is what the family think they need to do, but they are worried about the high cost of replacement windows.

Replacing windows might help a little but it is expensive and the key issue here is that all five occupants are very active and there are almost five baths or showers needed every day along with a huge amount of clothes washing. If heat meters were placed around the hot water pipes, it would become clear that relatively little heat is used to heat the building warm – the majority is used to heat hot water. In this case, either solar water panels (which use the sun to heat water and could provide about 50% of the warmth) or a waste water heat recovery system (which provides about the same amount of heat by recovering warmth from the outgoing waste water) could be usefully installed to halve the hot water bills, taking the overall level back to around average and saving perhaps £400 per year.

The high level of hot water use is also behind the mould issues. Because of the high bills, the family tend to keep all windows closed and the fan in the bathroom doesn't work well. There is a lot of cooking on gas and no extract fan in the kitchen (windows are only opened when cooking fish) and the high cost of the tumble drier and rainy weather combined means clothes tend to be dried on radiators around the house. Doors are left open and the moisture in the air finds its way to the coldest spots around the house, forming condensation and then mould, particularly around the windows.

In the first instance, the following will suffice, saving high cost items for later:

- Install either a solar thermal system or waste water heat recovery system to deal with the high hot water loads
- Install new, quiet, heat recovery fans in kitchen and bathroom - inexpensive and will reduce moisture at source
- Build a simple ‘lean-to’ in the garden to dry wet clothes / towels in any weather.
3 – A DIFFERENT APPROACH

This section describes the context within which we have developed this guide, and sets out the reasons for the different approach we have taken.

3.1 BEYOND ENERGY EFFICIENCY TO A BALANCED APPROACH

Climate Change is Not the Only Issue We Face

There is little doubt that climate change is the most significant threat facing humanity and it is right that huge efforts are made to address this problem globally. As domestic energy use represents 30% of total national energy use the sector clearly has an important role to play in helping to achieve the targeted reductions, and as discussed in Section 2.1, the joint concerns of climate change and fuel poverty are driving the retrofit agenda in Scotland.

Climate change and fuel poverty are not, however, the only threats facing us and our planet. Global population growth, the increase in urbanisation and loss of soil and useful agricultural land form a worrying combination, while losses in biodiversity, continued species extinction and many of the outcomes of climate change such as flooding, rising sea levels, increasing extreme weather and storm damage all combine to create vast challenges. On a human level, both absolute and relative poverty continue to cause untold suffering and frustrate efforts to improve life for billions.

Beyond ‘compassion fatigue’ the sheer range of problems facing us presents us with a more practical issue: it is difficult to grasp the interrelationships between these problems, and therefore to address them in a co-ordinated or effective manner. It is much easier to pick one area of concern or interest and focus on dealing with that. Concentrating on solving one problem for any length of time however almost always leads to the conclusion that the problem at hand cannot be solved in isolation.

Although it is difficult to appreciate these interrelationships initially, there is no doubt that they are all interrelated and it is our task to attempt to identify and understand these relationships as far as we possibly can. This is because, as most of us appreciate at some level, if we only solve one problem, in isolation, there is a risk that we will only create other problems which will need to be solved in the future, often at higher cost.

This is exactly what is currently happening in the world of building retrofit. Current practice is helping to reduce carbon emissions and fuel bills, but not as effectively as it could, and is at times increasing risks to the health of occupants and the longevity of Scotland’s built heritage. This guide is an attempt to broaden out our area of focus in retrofit using a balanced approach which will more effectively reduce energy consumption, safeguard the health of people living in renovated homes, and ensure that...
the long-term costs of maintaining buildings and caring for our heritage are minimised.

The Performance Gap and Building Performance Evaluation

If the previous section described the need for a balanced approach from a more philosophical angle, this section describes how the same conclusion is reached from a purely technological angle.

The Performance Gap

There is a small but growing area of investigation around what is termed the ‘performance gap’. That is, the gap between predicted energy efficiency and the results of in situ tests which accurately measure the real life performance of the buildings once completed, and, in most cases, inhabited. The UK government has funded a number of studies on the subject because it is becoming clear that one of the most significant threats to achieving our carbon emissions targets (like the ones described in Section 2.1) is this performance gap.

The graph illustrates the scale of the problem. The mauve columns indicate the predicted heat loss of the buildings while the adjacent blue columns show the actual heat loss, as measured on the completed building. The graph covers only 16 case studies but a pattern is immediately clear: the actual heat loss is consistently higher than predicted, and in one case, the discrepancy was 120% more than the predicted amount. Worryingly, the case studies all had a focus on improved energy performance, where particular attention was being paid to ensuring the buildings behaved as intended. In other studies, energy consumption has been shown to be over 300% the predicted levels.

Building Performance Evaluation (BPE)

Although the initial impulse to study the performance gap grew from a concern about energy efficiency and the gap between predicted and real performance, it has broadened into an investigation about a number of other ‘unintended consequences’ which have been discovered along the way. This field of investigation is generally called Building Performance Evaluation (BPE). Another term sometimes used is Post-Occupancy Evaluation (POE).

Broadly speaking, the practice involves four types of investigation. The first is a range of physical tests carried out on the buildings themselves. These usually include in situ ‘U’ value testing, airtightness tests, thermography and testing of heating and ventilation systems. The second is the monitoring of energy consumption, be it electric, gas or other such as heat metering or quantification of biofuel use. In the case of electricity, the investigation can be broken down into individual sub-circuits, so that it is possible to isolate the energy used by individual components or spaces.

The third type of investigation relates to the monitoring of internal conditions within a home such as temperature, relative humidity and CO2 levels but increasingly, investigators are also interested in VOCs and other gases and particulates which might affect occupant health. The fourth type is made up of various techniques to engage people, be they the client, builders, designers maintenance officers, but in particular helping occupants to understand and better control their environments.
this ‘soft’ information might seem less scientific than the ‘hard’ data
being gathered elsewhere, in fact this aspect has been shown many times
to offer the greatest potential to improve energy efficiency and internal
conditions through behaviour change.

These four aspects are then drawn together to form an overall view of the
building and occupants; establishing any problems clearly, and what to
do about them. Importantly, this information is evidence-based and can
be shared with clients, occupants and others. Because the basic data
tends to come in the form of thousands of individual data points, it is
important to develop ways of presenting the data in ways which are easy
to understand and which clearly show results and ways forward.

Unintended Consequences and the
Need for a Balanced Approach

Although every investigation is different, the efforts of BPE practitioners
are increasingly showing trends and patterns of problems encountered
which help us understand why energy is not being saved as intended
and what effects the focus on energy is having on other aspects. We have
drawn heavily on these findings for this guidance because they are based
on real findings, rather than modelled predictions. Some of the most
common problems encountered are discussed below and shown in the

Problems with Energy Efficiency

The most obvious finding from most BPE studies is that the savings that
were anticipated have not materialised in reality. There are many reasons
for this, and they differ across different projects. One of the most common
reasons is that people do not behave as expected in buildings. When the
discrepancy between predicted and monitored energy consumption has
been identified in the past, it is the ‘unexpected’ behaviour of occupants
which has been held up as the reason. There is plenty of truth in this,
but it is far from the only reason and it is important that a responsible
industry looks beyond this, towards some of the more inconvenient
issues.

An important reason is the raft of limitations of the modelling tools
used to predict energy consumption and this is discussed in some
detail in the following section. Another is poor design, detailing and
specification and Chapter 4 of this guide is an attempt to address some
of these shortcomings. Another is the poor installation of materials and
components by contractors and this is discussed in the following section
on quality and inspection. Inadequacies are routinely found in the design
and installation of the building services and one of the most important
aspects of this is the various control interfaces which are often poorly conceived and poorly understood by the occupants of the building who then don’t use them effectively.

Lack of maintenance can directly affect the energy efficiency of a building, mainly because building fabric which is damp will conduct heat more readily than when dry. In larger organisations like housing associations and council housing departments, maintenance budgets and responsibilities are usually separate from energy efficiency ones, but an important aspect of this guidance is that the two issues are closely related and should be seen as complementary wherever possible.

Energy efficiency is not always delivered as intended, and this also affects fuel poverty aspirations, leading to dissatisfaction from vulnerable occupants and frustration for organisations who carry responsibility for caring for their tenants.

Renovated buildings which use more energy than expected will have a greater carbon footprint, but operational energy – the energy used day to day to keep warm and run electrical goods – is not the only energy impact buildings have on the planet. ‘Embodied energy’ is the term used to describe the energy associated with manufacturing (and disposing of) a material or component and many of the materials used in retrofit have very high levels of embodied energy. This is often justified by the fact that such materials save far more energy, once installed, than is used to create them, but products exist with much lower embodied energy which can fulfil the same task. Taking a broader view of energy efficiency means that all savings in energy consumption, and carbon emissions, are to be welcomed.

Taking a further step back, it is possible to identify a phenomenon known as the ‘rebound effect’. The most common example of this is that where houses have been insulated, monitored energy consumption does not reduce as much as anticipated because homes and rooms which were previously too cold, are now kept warm. Insofar as this now means people are comfortable when they were not before, this is wholly a good result, but this and externalised activities (like spending the money saved on cheap flight holidays) means that overall, carbon emissions have not been reduced as anticipated.

Comfort and Health Issues

The most important outcome of most retrofit works is that homes are warmer for the people who live there. Despite the potential rebound effect mentioned above, any result which allows people to live in comfort is welcome. However, as internal temperatures rise there comes a point at which the home becomes too warm. Such a point is difficult to define because people vary in their comfort thresholds, but there is no doubt that a house that is ‘too warm’ for whatever reason is not good for health and can become seriously so in extreme cases. Overheating is now a recognised problem in the South of England where well insulated and airtight new homes, and recently retrofitted homes, have overheated significantly, causing discomfort, risks to health and even death in some cases. Monitoring of some low energy buildings in Scotland has shown that despite our higher latitudes, highly insulated and airtight homes that do not take account of the risks are already overheating, creating comfort and health concerns.

Another common consequence of retrofitting buildings is that a combination of improved insulation and airtightness, coupled with
unimproved ventilation result in warmer, more humid and stuffier air. This has two important implications.

The first is that warmer air carries more moisture and so the total level of moisture in the home increases. This warm, moist air can condense on cold surfaces as described in Section 2.2. BPE investigators routinely find areas of mould on walls, furniture or stored clothing and other areas with reduced air movement. Mould is implicated in a number of respiratory health problems and is clearly an undesirable consequence of improvement works.

The other implication is that the pollutants that are commonly introduced into internal air from modern lifestyles, furniture and buildings are not ventilated away and can build up. At low levels this ‘stuffiness’ is not particularly serious, but at higher levels, over prolonged periods, and for some more vulnerable people, it can become a serious health problem. The dual risks of increased humidity and internal pollutants is discussed more fully in Section 4.9 on ventilation.

Risks to Building Fabric and Heritage

The same moisture that is causing problems for human health can also cause problems for the building fabric. Condensation left unattended can seep into adjacent porous materials such as insulation or timber and the same is true of water which has got into the fabric from outside due to lack of maintenance. This moisture can saturate materials leading to decay of timber, rusting of ferrous metal components and spalling of masonry components near the outer face of the building. Many millions of pounds are spent each year dealing with the repair and replacement of moisture-damaged components in buildings. Much of this cost could be avoided with a better appreciation of the way moisture moves in buildings, and the need for good ventilation and maintenance.

The importance of ventilation in helping resolving the problems of moisture and building fabric decay, as well as moisture and human health cannot be overstated. While ventilation doesn’t tackle the sources of the moisture, nor of pollutants, it can be effective in dissipating both and should always be considered an integral part of any renovation project.

Beyond the physical condition of the building, inappropriate measures to save energy can have a detrimental effect on the heritage value of a building and this is discussed in greater detail in Section 3.4.
Common Findings in Building Performance Evaluation

Problems with Energy Efficiency

<table>
<thead>
<tr>
<th>Problem Description</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency not as good as expected:</td>
<td>Due to inaccurate modelling / prediction, inadequate design / specification and installation generally (e.g., of insulation / airtightness measures), inadequate installation and performance of products, misunderstanding / lack of interest in controls / systems, inadequate maintenance.</td>
</tr>
<tr>
<td>Environmental impact increased</td>
<td>Due to above, also high embodied energy of components, or use of rare materials / from vulnerable habitats. Rebound effect.</td>
</tr>
<tr>
<td>Fuel Poverty not reduced as far as anticipated</td>
<td>Due to above, lack of comfort + higher costs for energy for vulnerable households, frustrations for occupants and social landlords.</td>
</tr>
<tr>
<td>Rebound effect</td>
<td>Increased comfort (higher temperatures) absorb potential savings, unappreciated under-heating of property before retrofit works, savings spent on carbon-heavy items (e.g., cheap flight holidays).</td>
</tr>
</tbody>
</table>

Problems with Comfort and Human Health

<table>
<thead>
<tr>
<th>Problem Description</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface condensation and mould growth</td>
<td>Due to combinations of low surface temperatures (thermal bridging / bypass), inadequate ventilation (including reduced air leakage) and high internal humidity linked to lifestyle.</td>
</tr>
<tr>
<td>Poor Indoor Air Quality (IAQ)</td>
<td>Reduced ventilation / increased airtightness, higher levels of humidity, toxins / pollutants from variety of external and internal sources.</td>
</tr>
<tr>
<td>Overheating / temperature fluctuation</td>
<td>Reduced thermal mass from internal wall insulation (IWI) or floor overlay, sometimes combined with heating controls, increased insulation generally, reduced ventilation / air leakage, higher levels of glazing, lack of measures to avoid overheating.</td>
</tr>
</tbody>
</table>

Problems with Building Fabric and Heritage

<table>
<thead>
<tr>
<th>Problem Description</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building fabric decay (timber rot / infestation, rust / masonry spalling etc)</td>
<td>Linked to surface temperatures and mould above, build-up of moisture due to impermeable materials used, ingress of rain / leaks (inadequate maintenance / external works), air leakage from inside, inadequate ventilation internally or to cavities.</td>
</tr>
<tr>
<td>Changes to external appearance / loss of historic fabric</td>
<td>External wall insulation (EWI) insensitively applied, inappropriate replacement windows, or renewables installations, incongruous alterations especially in relation to street.</td>
</tr>
<tr>
<td>Changes in internal appearance / loss of historic fabric</td>
<td>Loss of original features due to removal / IWI, loss of windows, finishes generally, inappropriate services intrusions.</td>
</tr>
</tbody>
</table>
3.2 Reality and the Design and Build Process

The previous section describes how BPE has underscored the need to adopt a more balanced approach to retrofit which values health and comfort issues, and the building fabric as well as energy efficiency. If this more balanced approach could be described as a change in the fundamental direction of retrofit, this section describes three more BPE findings which could be described as weaknesses in the working processes of retrofit as commonly practiced.

Modelling vs Reality

There are many reasons for the performance gap described in Section 3.1, but one of the most important is the limitations of the tools commonly used to predict energy consumption. In the UK, for domestic projects, the tool that must be used to show compliance with the building regulations is Standard Assessment Procedure (SAP). Its much simplified brother Reduced data SAP (RdSAP) is used in most retrofit scenarios. Both are described in the adjacent box.

SAP calculations have been a hugely important part of the overall drive to make building construction more energy efficient over the last 30 years or so. By providing a quantifiable method they have enabled the industry to develop far more effective ways of creating energy efficient buildings. The key issue to note however is that a SAP calculation is above all a compliance tool and does not necessarily represent the ‘real’ energy consumption of a dwelling.

The (very significant) trouble with this however is that both SAP and RdSAP are almost universally treated as being representative of actual energy consumption. Thus they are used by policy advisors and government officials to provide evidence of both existing and projected energy consumption scenarios and funding regimes (as described in Section 2.1), while at the other end they are used by occupants of homes to understand their own energy bills and potential improvements. The use of both tools in these situations is so ingrained that it is difficult to shift people’s perceptions, and this is arguably one of the most important causes of the performance gap.

Some of the reasons SAP and RdSAP do not necessarily represent reality are limitations on any prediction tool, others are peculiar to them only. A list of some of the more important reasons is given in the box on the next page.

While SAP and RdSAP have been an invaluable aid in driving forward the energy efficiency agenda, there is a risk that they are also acting as a straitjacket that has the potential to cause problems beyond their own narrow remit, and particularly for older buildings. This is one of the principal lessons to emerge from studying the performance gap but it remains problematic for the industry because SAP remains such a significant determinant of regulation, policy, funding, design and installation criteria.

Both tools are constantly under development and looking forward, if they continue to be treated as representative of reality by the industry, they should be calibrated against ‘real’ monitored results which would give greater confidence that we are basing our regulation and policies on sound data.
Some Issues with SAP

SAP makes assumptions about how people will act in a building in order to compare buildings fairly. However, people actually maintain their homes at considerably different temperatures so it is impossible to accurately overlay the assumption made by SAP onto actual energy consumption and fuel bills.

SAP cannot predict the actual quality of the construction, despite a number of input points that allow it to go some way towards this. When buildings are built or retrofitted poorly the actual energy consumption increases relative to the assumptions made by the calculation.

While SAP shares much of its basic structure with other energy prediction tools, there are variations in the assumptions and weightings it gives specific items. For example, SAP is very responsive to changes in boiler choice, but relatively unresponsive to changes in airtightness and window configuration.

Unlike some calculation methodologies, many of the assumptions and algorithms that lie beneath the surface of SAP are hidden and not accessible, so it is not possible to adjust to suit different circumstances, nor to understand why certain default figures are chosen.

Until recently, SAP assumed that every building was located in the centre of the UK, near Derby to be precise! This meant that increasing latitudes South and North of this location would lead to increasingly misrepresentative results, with buildings in Scotland almost certainly performing worse than predicted.

Quality, Coordination and Inspection in Construction

Many buildings are designed by architects and checked by building control, both of whom have an overview of the project. Both are then engaged in maintaining that overview during construction and have a role that is independent of the client and the builder. In many cases, a clerk of works is also employed to keep an eye on things on site on a day-to-day basis. No system is perfect but the key thing is that there are often three qualified people who are responsible for a coordinated overview of the construction, as well as a responsibility to inspect and review quality on site.

In many contemporary retrofit projects, none of those three roles are now involved. Architects tend not to be employed for the large-scale energy efficiency upgrades which affect the homes of many thousands of people in Scotland. Levels of regulatory involvement by building control vary across the country, but on the larger scale energy efficiency upgrade projects, they tend to restrict themselves to a limited series of paperwork compliance issues to be provided in advance of the works. In many cases, housing associations and council housing departments do not even employ a clerk of works who is independent of the builder.

In this way, for many projects – and in particular projects expected to deliver the carbon emissions and fuel poverty reductions demanded by the Scottish Government – there is often no-one with a overview of the building in its entirety, nor someone with an independent role to inspect quality on site. In every case, contractors will provide their own coordination and inspection services, but it is naive to imagine that standards on site will always remain high when there is no independent check.

As regulatory standards of energy efficiency increase, demands made of contractors are increasing. These demands include a higher standard of workmanship than previously required, but also the inclusion of relatively new procedures, such as the additional demands of airtightness and renewable energy systems. Complexity is increasing, design and specification information is not always up to scratch and being generic, is not always appropriate for all building types. All of this is also set against an economic context in which clients are under pressure to reduce costs, so profit margins and tolerances in the system are being worn down.

Under their own pressures, contractors, their designers and suppliers undertaking energy efficiency retrofit projects tend to ‘design to SAP’ meaning that works are specified simply to tick the relevant boxes in the SAP or RdSAP calculation. This is reasonable because it is the only major regulatory hurdle to be cleared in the process, but as discussed above, these calculations are ‘defect-blind’ and cannot provide guidance on site quality issues.

There are some checks in place on retrofit projects. Manufacturers usually provide guidance on how to use their products and many offer warranties on the use of their products provided they are installed as required. Most warranties only apply to that product or system however, and can say little about their interaction with other components or areas which have been missed on site. There are also a number of training and certification programmes on offer for builders and all related trades. Some of these operate at a very high level, but a great deal of workmanship is well below acceptable standards.

BPE has highlighted a number of issues in relation to quality on sites but two stand out as important. The first is the need for a sufficiently
skilled person to have an independent overview of the whole building, ideally with responsibility that extends beyond funded energy efficiency measures to issues like maintenance, building condition generally and indoor air quality. The second is to have a skilled person (potentially the same) who has a role independent of the builder to inspect quality of construction. The goal is to have buildings which perform in reality, as well as predicted.

Moisture

The issue of moisture is implicit in several of the subjects discussed so far, but it’s importance makes it worth separate mention. At a basic level we all know moisture is important: roofs and walls keep the rain out and most people know to open a window after a shower. However, our sensitivity to changes in moisture around us is not well developed as noted in Section 2.2 which means we are not well equipped to know when the relative humidity in the air in our homes might lead to problems, until it is too late.

The building regulations deal extensively with moisture; ensuring that water from outside cannot penetrate from the sky or the ground, and also ensuring that moisture generated inside our homes cannot enter the building fabric, and is safely vented away. Interstitial condensation calculations are usually required for new build projects. However building control compliance is rarely required in most energy efficiency-driven retrofit projects and so these checks are not made.

The principal regulatory issue for a large proportion of retrofit projects is the need to comply with the requirements of the EPC – a function of RdSAP. Beyond cursory assessments of exposure (to the weather) neither SAP nor RdSAP recognise the importance of moisture and the difference it can make in reality.

It is possible to model moisture movement in buildings, both in the air and in the building fabric itself using ‘hygrothermal’ modelling software such as ‘WUFI’ and ‘DELPHIN’ as well as detailed analyses such as ‘ESP-r’ but all of these models are complex and therefore both time-consuming and expensive to undertake. A small number of specialists provide such calculations in association with their products but on the whole this is not undertaken in most retrofit projects.

Thus we are left in the situation that in many retrofit projects, the issue of moisture is not addressed in any formal sense, despite the fact that it is critical to the performance of the energy efficiency upgrade, the health of the occupants and the longevity of the building.

The problem is made worse by the fact that modern, impervious materials are often used, which then direct moisture in unexpected ways, and worse again by the fact that ventilation – which can reduce the worst effects of excess moisture inside buildings – is not included in the upgrade works because it is not considered an energy efficiency measure.
3.3 Occupant Engagement

The largest variable in energy efficiency in practice is often nothing technical to do with insulation or airtightness, but the variability between the ways in which different people use the buildings they inhabit.

Although this is widely understood, the subject remains outside the remit of almost everyone involved in the construction industry. If people want to leave their heating on full and their windows wide open there really is nothing we can do about it. Although this is true, and the urge to ‘make people do the right thing’ is moving into ethically ambiguous territory, the scale of the issue and the benefits that could accrue from some form of ‘occupant behaviour engagement’ make this a subject with which everyone within the industry will have to become increasingly involved.

The lessons to be learnt are equally valuable to homeowners contemplating their own retrofit as to large-scale landlords such as councils or housing associations, but while it is easy for the homeowner to act directly as they see fit on the basis of this guidance, it is not so simple for the landlord and some sensitivity is required.

Engagement, Understanding and Controls

The act of engagement involves three related tasks. The first is to educate occupants as to the background issues and reasons for greater engagement. Grasping the benefits of greater energy savings, better comfort levels and indoor air quality, and avoiding condensation and mould in their own homes is easy to do without the need for complex instructions and reasoning. It is easier still when specific problems have already arisen, for example where children have developed respiratory problems or where it is proving difficult to keep some areas of the home adequately warm.

The second and closely linked aspect is to encourage engagement with the controls and mechanisms of the home. It is sometimes surprising how little people understand of the way their home is controlled, especially given the costs involved. The best time for this engagement tends to be when specific works are undertaken. Thus in retrofit projects, it is imperative that the commissioning and handover section is carried out carefully and thoroughly. The onus is often on the contractor here at a time when they are near, or at, completion, with competing pressures, and difficulties in co-ordinating times when the occupants are home, so systems often aren’t properly explained.

The third aspect of engagement is to ensure that controls (such as thermostats) are designed to be clear and easy to manage. This aspect is worth mention because it is often overlooked and BPE practitioners come across controls interfaces which make little sense. The problem is that the design and specification of controls tends to fall to sub-contractors (plumbers and electricians) who install whatever is simplest and most easily available. Controls are often not intuitive, do not say what they control, or offer a range of options which do not make sense. The onus here is on the designers and specifiers of the heating and ventilation systems to engage meaningfully with those who will use their products.
Recommendations

The following suggestions will enable occupants to better engage with their homes and provide greater understanding and control over their bills, comfort and air quality.

At Design / Procurement Stage:
• consider the sections on heating and electrical equipment, both of which contain guidance on how to reduce costs, but also to increase control over the various systems in the property.
• ensure suitable ‘smart’ meters for both heat and electricity are to be installed with interfaces in prominent / commonly used locations to allow for immediate and easy-to-understand feedback on energy consumption, with current figures and memory data allowing to compare current use, for example with previous year / month / week etc.
• in addition to fire and safety alarms, consider hardwired indoor air quality sensors with visual interfaces to main rooms, offering instant feedback about temperature, relative humidity, CO and CO2 levels as a minimum. (CO2 monitors are now required in new build homes for bedrooms).
• agree a strategy to ensure all controls are considered as part of the design. All controls for heating / cooling and electrical items should be agreed with the client either as a particular specification, or a performance specification. Issues might include engraving of switches, neon indicators to show when items are ‘on’, consideration of type of switch (eg. on/off switch or dial, ‘rocker’, dimmable, LED display etc.) A useful guide is provided by the BCIA (Building Controls Industry Association) entitled ‘Controls for End Users’.

At Commissioning & Handover:
• ensure commissioning process is rigorously carried out, ideally with individual sign-off sheets for all major systems.
• ensure all handover procedures are carried out carefully. The NHBC Foundation has published a guide on best practice and there is a good deal of other guidance around. Timing is critical so people are sufficiently familiar with controls and not trying to take on the information as they physically move in.
• for larger housing organisations, it may be worth creating a role to specifically help tenants with their systems and controls. This can be carried out at handover, but can also be an ongoing service for all tenants. Renfrewshire Council employed a suitably trained person specifically to speak to all tenants and ensure they understood their own systems and could set them to achieve the optimum levels of comfort and cost savings in relation to their individual lifestyle.
• quick start guides are now required for all new homes in Scotland and a similar approach could be taken with significantly renovated properties, especially where services such as heating or ventilation have been changed. Quick start guides should provide a clear and succinct account of how to use all of the main equipment in a home, but also the benefits of doing so.

An example of a quick start guide, which briefly, clearly and graphically explains the principles and systems of a new home.
3.4 RETROFIT AND CONSERVATION

Until quite recently efforts to improve sustainability and energy efficiency in the built environment were focussed on the new build sector, largely through incremental improvements to the building regulations. However, it has become more widely appreciated that to address climate change and fuel poverty, it is critical to begin to address the existing building stock in a systematic way. The majority of energy efficient upgrade work funded by Scottish Government is undertaken by the retrofit sector as described in the box on the right. The goal is to reduce energy consumption in buildings and this is being achieved, but it is the sector where the concerns noted in this document are greatest, and where the greatest potential lies for improvement.

Meanwhile, the conservation sector has been busy refining its own approach to sustainability and the preservation of that small but important number of buildings for which it has responsibility. Having developed from the perspective of protecting important historical buildings, monuments and landscapes from insensitive development or demolition, the attitude of most conservation bodies has traditionally been one of resisting change as far as possible, whilst acknowledging in principle that some change is inevitable. Within parts of the conservation movement however, there is now a more open approach and greater willingness for compromise and dialogue on integrating the traditional conservation approach with energy efficiency and wider sustainability aspects.

This is encouraging, but lessons can also be learnt the other way around. The conservation movement has developed over many years a sophisticated and practical understanding of older buildings and how they need to be treated. That knowledge is not moving in the direction of the wider retrofit sector fast enough and is an important aspect of this guide.

In essence the issue of one of quantity and quality. The goal of the retrofit sector is to reduce carbon emissions and reduce fuel poverty and so the more buildings that can be upgraded the better. As discussed, the existing mechanisms used are relatively blind to quality and tend to over-emphasise quantity. The goal of the conservation sector by contrast is to faithfully preserve and manage the legacies of our built heritage and the emphasis has always been very much on quality, both of materials and processes.

Both approaches have been partly successful on their own terms. Completed publicly funded conservation projects are exemplary in their approach but there simply isn’t the money available to lavish that degree of care and attention on the many scores of thousands of older buildings that form the core of our cities, towns and villages. The publicly funded retrofit sector by contrast has upgraded many thousands of properties, but as discussed, has not achieved the savings anticipated in many cases, creates a range of unintended consequences, and is at times complicit in the loss of architectural and cultural character of places.

There is no doubt of the overarching imperative of climate change but an important part of this guidance is to take some of the lessons learnt from the conservation sector and apply this to the retrofit sector. Not only will this lead to improved energy savings, it will provide benefits on a wide range of other fronts.

The Retrofit Sector

This sector has sprung from the acknowledgement that to meet emissions targets worldwide, governments must extend efforts to make the existing built stock more energy efficient. In Scotland, the primary agent is the Scottish Government, with links back to UK and European legislation.

Other important agents have been the larger manufacturers and contracting companies who provide the bulk of the materials and labour between them. Recent initiatives have involved the large energy and utilities companies who have delivered much of the most recent retrofit works in Scotland through extensive outsourcing.

The Conservation Sector

The first conservation organisation was the Society for the Protection of Ancient Buildings initiated by William Morris and others in 1877. The National Trust was formed soon after in 1895 and the sector now comprises a great many organisations in the UK and worldwide that share concern for the protection and sensitive maintenance and refurbishment of historic buildings, monuments and landscapes. There is a great deal of overlap between those organisations primarily interested in buildings, and those concerned with the greater conservation of natural environments.

Some of the work of the sector has been absorbed into government and become part of statutory processes such as the listing of important buildings. In Scotland the principal agent is Historic Environment Scotland (HES) while conservation officers form part of the planning departments of most local councils.
Different Construction Principles and Materials

The first lesson is an understanding that older buildings, especially those built before 1919, were constructed quite differently from contemporary buildings in some important ways. Some of these differences can be partly attributed to the fact that people behaved differently and had different expectations, thus traditional buildings were not required to achieve some of the things we ask of them nowadays (insulation and airtightness in particular) but even allowing for this the following describe some significant differences:

- as discussed above, older buildings manage moisture quite differently, and rather than apply modern approaches to moisture management, approaches which more closely match the original principles and construction will result in better performance in the long term. The need to provide greater airtightness complicates this aspiration but the use of ‘breathable’ and hygroscopic materials allows for a close correspondence with original intentions while also reducing heat loss.
- until the arrival of concrete and cement, most older buildings were built to be flexible, tolerating the various small and slow movements characteristic of buildings. This is in contrast to much modern construction which is often rigid and brittle, meaning that the inevitable movement of buildings can lead to cracks and other problems. Using inherently flexible and slightly more ‘forgiving’ materials will lead to better performance and fewer problems in the long term.
- older buildings tended to use fewer elements, many of which provided a number of roles in the building, in contrast to modern construction which tends to use many more components, each of which have a single and targeted role to play. Retrofit solutions using fewer elements to achieve a number of goals are likely to ‘fit in’ better than more complex alternatives.
- traditional buildings used a limited palette of mainly natural materials which both restricted them but also gave them and the local area a character which is now highly valued. Modern designers and contractors have a huge range of materials to choose from but some sensitivity to the local and natural options used can only help solutions to look and perform better in context.
- maintenance of internal and external finishes was assumed in traditional buildings. This is generally seen as unwelcome nowadays, but there are long term benefits from this approach as discussed below.

Maintenance

Nowadays, the concept of maintenance is much maligned and manufacturers go to considerable lengths to promote ‘maintenance-free’ products and systems. This fits well with our social and cultural norms of ‘time-saving’ devices and with many leading busy lives, there is undeniable value in this. By contrast, the conservation approach – and the approach of this guide – is to consider potentially higher quality items at the outset which need to be, or at least benefit from being, maintained regularly.

There are three benefits which accrue from this approach. The first is that by reflecting the original intentions of the design, solutions achieve a degree of philosophical and practical correspondence which ‘fit-and-forget’ solutions could never achieve. The second and third benefits relate to the fact that despite the initial cost, well-designed and installed higher quality components which are maintained will outlast a series of cheaper solutions which are inevitably replaced. This leads both to cost savings in
the long term, and to reduced resource consumption – less disruption and waste.

Examples of this approach include the use of traditional Scottish slate detailing which by using a single nail instead of two allows for much simpler replacement, the choice of wooden windows which, when maintained can last for hundreds of years, and the use of lime mortar which has a number of long term benefits over cement. It is worth saying however, that this approach requires a commitment that maintenance will take place from those responsible, and the careful choice of components and materials to allow this to be a simple and cost-effective process.

Significance and a Good Survey

The house surveys undertaken to generate the RdSAP calculation are cursory and work with a large number of default settings which speed up the process, but do not allow for more than a passing understanding of the property and indeed are often wrong.

By contrast, the conservation sector takes the issue of a survey very seriously and in most cases this would include an in-depth survey and investigation of the building leading to a broad understanding both of the construction and condition of the building, but also an understanding of its history, in order to better understand its significance. If there are idiosyncrasies in the building, these are to be respected. This significance can be quite obvious physically, for example, an ornate stone façade, or it can be quite hidden, related to a unique view, being part of a greater whole, or the fact that someone famous lived there. The point is that this significance, however it is derived, is allowed to determine the appropriateness of subsequent measures.

There is no way the resources used in typical conservation projects could be applied universally, nor would this be necessary in many cases, but there is no doubt the current level of understanding needs to be raised in the retrofit sector. A better knowledge of the property in advance, coupled with the sort of awareness of the differences in construction described above, could lead to much more effective and appropriate solutions.

Equally, it is important that the unique or noteworthy characteristics of Scotland’s buildings are respected and retained, not lost beneath a well-meaning blanket of insulation. To achieve this, the initial survey needs to be more detailed and nuanced, it is also important that some level of judgement and flexibility is included in all retrofit works in order to preserve the unique features of our buildings and the places they characterise.
Changing Approaches to Building Performance

- natural material / insulation
- synthetic materials, offgassing & insulation
- airtightness layer
- natural materials / insulation
- draughts
- ventilation (intentional)

<table>
<thead>
<tr>
<th></th>
<th>1945</th>
<th>1970s + synthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR MOVEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDOOR AIR QUALITY (IAQ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COST TO HEAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIALS / FINISHES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURABILITY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cold
- Draughty
- Good IAQ
- Poor IAQ
- £££
- Natural
- Synthetic
- Robust
- Less Robust

A DIFFERENT APPROACH
3.5 **A Different Approach**

Over the course of the last four sections we have discussed the four primary objectives of this guidance; to achieve a greater *balance*, to focus more on *reality*, to better engage *people*, and to take on board some of the lessons of the *heritage* or conservation sector. Within these four, we have highlighted ten issues which, if adopted conscientiously, would achieve these objectives and significantly improve retrofit practice in Scotland.

In this section, we provide an overview of this approach to provide some context for the more detailed suggestions made in the following chapter.

The diagram below looks at how we have been approaching buildings in the last 100 years or so. The diagram is not meant to be perfectly accurate and of course is a huge generalisation, but it helps to provide some context and history to the way we are approaching renovation in this document and how this differs from other guidance. What it does not show is how we value the heritage of a building but the six ‘streams’ below indicate different outcomes to the general approach adopted in each period shown.

Up until perhaps the Second World War, buildings were largely draughty and uninsulated, making them expensive (in cost or effort) to keep warm, so people often kept only some of the rooms comfortable. Materials were largely natural and non-toxic (although there was lead in paint) and so on the whole, due also to the draughtiness, air quality was good. The draughts which made the houses cold also kept them dry and because
maintenance was often more accepted as part and parcel of life, the houses could last well and were relatively robust.

In the 1970s, the biggest change was the sudden expansion of synthetic materials, particularly surface finishes which were often wipeable or stain-resistant or had some other practical advantage. What was less well appreciated is that these ‘modern materials’ introduced some fairly unwelcome vapours into homes, as well as other sorts of hazardous items such as asbestos, which are better known.

After the early 1970 oil crisis, the 1980s saw the building industry slowly start to introduce insulation in recognition of the need to conserve energy. Levels of insulation required have risen steadily ever since, making homes cheaper to keep warm for most. However, the overall quality of workmanship and materials being used was deteriorating, the complexity was expanding and overall, houses were becoming less robust.

In the first few years of this century, we began to get more serious about airtightness. This has improved energy efficiency once more, and combined with improved insulation levels has genuinely made homes easier to keep warm and more comfortable for most. However, the reduction in draughts has not been balanced with an improvement in ventilation. In addition people now use homes very differently from how they used them 50 years ago. We produce much more moisture in our buildings, and the plethora of synthetic materials and electronic equipment common in most homes now combine to create sometimes serious issues with indoor air quality about which most people are largely ignorant. Without draughts or properly designed ventilation systems to disperse this pollution, we are creating homes which pose clear risks to our health, and to the long term durability of the buildings themselves.

This document therefore sets out to achieve the final diagram. In this, buildings are carefully insulated and airtight (usually) making them easy to keep warm in the cold. However, they are completed using largely natural materials, or at least materials which do not pose a risk to health, and they are carefully ventilated, meaning that neither moisture nor air quality remain a concern. In this way we resolve the energy efficiency problem, but we also resolve the problems associated with air quality, moisture and long term durability of our buildings.

Another way to show this approach is to provide a case study. The table on the next page summarises the sorts of decisions that might be made for a pre-1919 terraced home in a conservation area, where a balance has to be struck between a range of competing elements, not least cost. The case study is based on a similar example provided by the Sustainable Traditional Buildings Alliance (STBA).

Hopefully it is clear from the brief description that the measures taken effectively reduce energy consumption, but also improve the health of occupants by reducing excess moisture and improving internal air quality (IAQ). At the same time the building fabric is protected from the effects of excess moisture and cold, while the heritage value of the property is preserved and indeed enhanced, at least from the street. Importantly, the residents have been involved in the decision making, now understand the systems installed and are committed to an ongoing monitoring regime to ensure conditions remain good.
Case Study – Georgian Terraced Town House in Poor Condition
Some Options for a Balanced Renovation Approach Undertaken for a Young Family

Context

<table>
<thead>
<tr>
<th>Location / orientation</th>
<th>Subject to driven rain at front but rear elevation (to north) stays wet due to lack of wind and sun.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form and condition</td>
<td>Bad pointing, leaky gutters, high ground levels. Chimney stack in poor condition, some dampness in walls and floor joists.</td>
</tr>
</tbody>
</table>

Fabric: Before

<table>
<thead>
<tr>
<th>Uninsulated 500m stone with lath and plaster finish, slate roof OK condition</th>
<th>Vapour open EWI to the rear & extension. Insulated lime plaster internally at front, lime repointing & stone repair to front elevation. Repairs to chimney & gutters, flashings replaced, slate work patched.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single glazed sash windows. Old shutters previously removed</td>
<td>Shutters reinstated & working, reveals insulated, double glazed unit in existing sashes, draughtstripped and redecorated, thermal roller blinds / insulated curtains.</td>
</tr>
<tr>
<td>Partially insulated roof space</td>
<td>Existing insulation re-laid neatly and overlaid with new to 300mm, no gaps, including hatch. Airtightness improved. Roof ventilation maintained.</td>
</tr>
<tr>
<td>Uninsulated timber floors to front rooms</td>
<td>Timber floors lifted, draught proofed and insulated, lowered ground levels externally, ventilation checked to solum beneath and enhanced.</td>
</tr>
</tbody>
</table>

Services: Before

<table>
<thead>
<tr>
<th>1980's era gas central heating</th>
<th>New condensing boiler; TRVs in all rooms; set back heating controls. Radiant heating panels in bathroom and kitchen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ventilation; windows and flues blocked shut</td>
<td>All windows brought back into use. Whole house MEV ventilation, with humidity-sensitive demand control. (airtightness improved due to other improvements, minimal disruption)</td>
</tr>
<tr>
<td>No renewables or low carbon technologies</td>
<td>Photovoltaic panels to contribute towards electricity demand. Waste water heat recovery for upstairs shower (high disruption but 45% reduction in hot water costs).</td>
</tr>
</tbody>
</table>

People: Before

| Young family. Children have asthma. No interest / understanding of building health or energy | Designer and contractor work with owners to increase understanding of occupant role in building health, energy use and importance of maintenance. DIY loft insulation, regular use of shutters / curtains at night, ongoing monitoring of key spaces for energy and air quality. More engaged. |

What Matters

<table>
<thead>
<tr>
<th>Energy / Environment</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above average energy bills.</td>
<td>60% or more reduction in energy (gas and electric) bills and CO2 emissions, now considerably lower than UK average. Ongoing monitoring.</td>
<td></td>
</tr>
<tr>
<td>Above average CO2 emissions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comfort / Health</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold / expensive to keep warm. High RH in bathroom leading to mould here and elsewhere. High VOCs in kitchen. Children asthmatic. Low levels of comfort and health.</td>
<td>Rooms are now drier, no mould on window reveals. RH and VOCs now safe for health/fabric and monitored. Health improvements for all the family.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building Fabric / Heritage</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
</table>
This section describes discrete elements of the overall retrofit process. The first three sections describe maintenance, airtightness and space and time, all of which apply across the whole building. These sections are not compared to conventional guidance because they are essentially additional information not normally given in typical guidance on retrofit.

The next four sections describe proposed works to the roof, walls, windows and ground floors. This is where it makes sense to compare the details offered to conventional guidance and we have tabulated the differences in relation to the ten principles mentioned in the introduction and described in the previous chapter.

The final three sections relate to building services where the range of options is vast and it was felt more helpful to describe the available systems and some contextual information that would help the decision making process in each case.
4 – WORKS

4.1 Maintenance

The Importance of Maintenance

In this document, we assert the importance of maintenance as a prerequisite of any works to improve buildings. There are many reasons given to undertake regular and comprehensive maintenance on your property:

• property in good repair will tend to be worth more and will sell faster if on the market
• minor repairs which cost relatively little, left for longer periods, can cause extensive damage and end up costing far more in the long term
• in general the cost of repairs is increasing faster than the cost of inflation
• poorly maintained buildings can lower the value of property in the surrounding area
• as climate change begins to bite, we will see more extreme weather. In Scotland it will become wetter and windier, putting a greater strain on the external fabric of buildings
• owners of buildings have a duty of care to ensure the safety of the general public. Unmaintained elements of the building can fall and injure people below, sometimes fatally
• our older buildings are a valuable and often irreplaceable resource and from the perspectives of both sustainability (resources and embodied energy) and cultural heritage, we have an obligation to care for these so that subsequent generations can enjoy them as we have
• caring for and maintaining historic buildings means supporting a wide range of traditional skills and techniques which, like the buildings themselves are important to retain

A further reason, less commonly discussed, is that good maintenance is a necessary prerequisite of energy efficiency. Leaks, blockages and cracks in roofs and walls can all allow moisture into the fabric of a building causing all manner of problems. Damp patches, mould and rotten joist ends are all commonly acknowledged as issues arising from poor maintenance but another, unseen consequence is that saturated materials conduct heat more effectively, ‘wicking’ warmth from a building, while gaps in buildings can allow cold air in, and warm air out.

On many retrofit projects, delays and additional costs are incurred due to uncovering things like rotten rafter or joists ends, damp patches in stonework or rusting metalwork which then need to be repaired. In short, regular maintenance would result in many expensive retrofit projects not being required at all, and saving a good deal of money in those that are undertaken. While regular maintenance work costs money, it is rarely as much, in the long term, as the alternative.

Much of the basic investigation work can be done by anyone, but it pays to have a professional undertake a more detailed investigation, particularly where access isn’t safe or straightforward, or where cause and effect are not obvious.

“They don’t make ceilings like that anymore.”
Poorly maintained buildings can lower the value of your property.
© The Estate of Norman Thelwell

The Myth of Maintenance Free

Traditional buildings on the whole were built to wear and weather relatively well as long as they were maintained. We know this works well because we can see the results of buildings built many hundreds of years ago. Products marketed as ‘maintenance-free’ purport to have escaped from the natural processes of weathering and wear and tear which is impossible in reality, and while in practice they may extend the period between maintenance, this is usually at the cost of being ‘non-maintainable’ meaning that the whole component needs to be replaced at the (inevitable) end of its service life. Not being maintainable, another problem can be when sub-components (like window handles) break, requiring the replacement of the whole unit.
Roofs

The roofscape takes the brunt of the weather, so it is the area where maintenance is most important. Being at the top of the building and factoring in gravity, problems with a roof can lead to problems through the whole building. As climate change brings more extreme weather, the importance of maintaining a weatherproof roof will only increase. At roof level, (ideally using binoculars) check:

1. slates or tiles which may have slipped or been damaged, sometimes slates are lying in the gutter below making it easy to see the problem
2. various flashings including the ridge flashing, valleys, parapets and abutments. In some cases these are formed by cement, which tends not to last as well as traditional lead or other metal flashings.
3. dislodged, leaking or overflowing rhones (gutters) and downpipes. Problems are more obvious when its raining, while at other times the giveaway sign is staining on the wall behind. It is also important to check that fixings for gutters and downpipes are adequate.
4. occasionally waste pipes will have problems, especially in cold weather where smaller amounts of water within freeze and create blockages
5. chimneys and chimney pots
6. loose or damaged stonework, on chimneys or wall copes which could potentially dislodge and fall
7. plant growth anywhere on a roof is a bad sign. Plants tend to hold onto moisture, increasing the risk of other moisture related problems while roots grow and eventually cause problems as they expand.
Internally, check for damp patches which could indicate an external problem that isn’t otherwise noticeable. It is also important to look in the loft if that is possible. It is possible that water getting in can run from the source of the problem to a low point somewhere else making problems harder to identify. Where insulation has become soaked or timbers moist, it is important to remove anything wet immediately and set about trying to ventilate the area.

Access to the roof is an issue. If the work is extensive, it is almost certainly best to arrange for scaffolding to allow safe and simple access to the whole area, but of course there are times when this isn’t possible, or only possible to some areas. Tower access is sometimes a possibility if the work is limited in area, and small areas can be accessed by a ‘cherry picker’ which is a small guarded platform on a crane which is lifted into place. In each case, there may be issues with access. Another solution, usually best if the work is not extensive or difficult, is to access the roof using steeplejacks and other trained climbers. Professional guidance is required, but contractors can also advise on the best way forward.

Walls

For external walls, scan carefully across in sections and check:
8. areas of decayed or spalling stonework
9. gaps in the mortar, and if the stonework has had modern cement pointing
10. visible cracks, particularly associated with lintols and windows, and any snaking down the building
11. lintols or courses of stonework not level
12. cracked or loose render
13. previous patch repairs or obvious alterations / improvements should be carefully checked as these often hold clues to problems below
14. items fixed to the wall which can come loose or damage the masonry, like TV aerials, washing line fixings etc.
15. staining of walls from gutters and downpipes, leaking waste pipes, inadequate drips from cills etc.

Occasionally walls suffer from structural failure and very occasionally there will be something inherently wrong, but on the whole walls themselves, if left as built, tend to be pretty robust. Problems tend to occur with leaks, for example from gutters and downpipes etc, but also

Access for maintenance at the rear of properties can be more difficult

Render fallen from a brick wall. It is likely that adjacent render is “boss” (loose) and repair is urgently needed
inappropriate finishes often applied later. The problems with these tend to be due to two things: movement and moisture.

Traditionally most stone buildings in Scotland would have been rendered (‘harled’) with a lime render with coats of limewash applied regularly for looks and protection. The lime render and limewash are flexible, meaning they were able to absorb the sorts of movements associated with masonry buildings, and also ‘breathable’ so moisture within the walls was able to safely escape. By contrast most cement or cement-rich renders are inflexible and impervious to moisture. This creates a number of problems. First, when the underlying masonry moves, the cement render cannot accommodate it and cracks. This crack then allows rainwater to enter the wall. Once inside, the impervious nature of the cement means that the water cannot escape and will tend to saturate the wall creating all sorts of mischief, leaching salts and creating spalling when the saturated stonework freezes and expands. Timbers like floor joists and lintols within the wall can decay due to the surrounding moisture and in addition, the saturated wall transfers heat much more readily, making homes harder to keep warm.

In late Georgian and Victorian times, a fashion for uncovered stonework emerged so many buildings of that era have a finished stone exterior. We are used to these nowadays and almost universally want to retain them. These facades are not subject to the same problems of cement render, but where they have been cement pointed, the cement mortar causes the same problems, allowing moisture in when cracked, but not letting it out again, leading to the sorts of ‘stone decay’ noted above.

For these reasons, it is usually best that cement renders and pointing are removed from those buildings originally rendered and re-pointed with lime. This is neither easy nor cheap, but not doing so means that any work carried out to improve the energy efficiency of the wall is at risk, along with the wall itself and anything structurally linked to the wall. Buildings built more recently which were designed with cement mortar and renders tend to have movement joints and will not suffer in the same way, although the principles above still apply and care should be taken to ensure that the building’s longevity is assured.

Windows

Windows can be inspected from outside and inside if access is available. Keeping careful note / schedule of each window, check:
- the condition of adjacent stonework, especially cills beneath
- the mastic surround to the window frame
- paintwork generally
- the condition of the timber (or other material), particularly at the lower levels.

If it possible to access the windows from inside it may be worth assessing the following as well:
- the condition of the original timber ‘safe’ lintols
- the mechanisms allowing the window sashes to open and close smoothly, and be effectively locked
- if the windows are draughty and whether draughtstripping would be beneficial
- the condition of any adjacent shutters and linings.

Many thousands of windows have been removed and thrown into landfill when they could have been repaired and maintained for a fraction of the cost. This waste is due most importantly to a lack of awareness of how
simple repair can be, a preference for 'one-size-fits-all' solutions (even when far more expensive) and a sometimes misguided drive to improve energy performance when many options to do so are available.

If a painted timber window is not maintained, then a combination of water running off the glass onto the lower portions, ultra-violet (UV) degradation of paint and thermal movement (warming up in the sun and contracting in the cold / at night) will eventually lead to failure of the paint coating. At this point water will get in through cracks or flaking areas and saturate the timber. Because, initially, most of the paint remains attached and is impervious to moisture, this water cannot escape naturally and the timber starts the process of decay. There are timber paints available which do not form a 'skin' as most do, so cannot crack or flake, and in addition allow vapour to pass through. In this way they provide much greater protection against decay.

Minimal maintenance, every five years or thereabouts, will avoid this and enable the windows to last many decades, if not hundreds of years. The maintenance involved can often be nothing more than a rub-down and re-coating of just the lower portions of the window. It is worth noting that it is usually only the lower portions of the window that are subject to this degradation. For this reason, regular maintenance can be both minimal and inexpensive unless there are complex access issues (such as the need for scaffolding). Equally, if there has been advanced decay, then it is almost always only these two lower sections, which are relatively easy to repair. Thus timber windows are not inherently high-maintenance as often stated, but with a little effort can be maintained for the entire service life of the building.

Common Stairs

If there is a common stair in the property, check:
- loose or missing balusters which children could fall through, damaged or incomplete handrails
- uneven steps or problems with stair or floor surfaces that could be unsafe
- emergency lighting and any alarm system.

Common Repairs and Responsibilities

The illustrations overleaf show the typical arrangement but it depends on the exact wording of any title deeds (and that of others) so it is important to fully understand these before assuming anything.

Common Responsibility

- external walls from the halfway point within the individual flat or close
- foundations and damp-proof course
- roof structure, slating, flashings, gutters and downpipes
- services – as far as the branch into an individual flat

Individual Responsibility

- anything serving only one property
- windows (but individuals have a duty to maintain their windows on behalf of other owners)
- doors to individual properties (usually flats)
- chimney pots and cowls related to individual flues
- front shop facades
- plumbing connection from fittings to waste pipe

Mutual Responsibility

- anything owned by two or more owners and should be paid equally by all who use the part, unless the title deeds say otherwise
- chimneys – paid for by all those that have a use of the chimney
- gable walls shared with an adjacent property (although hard to enforce)
- close windows
- close, close stair, pend and all owners who have use of access
- the floor between two flats is usually shared between the two flats.

Each owner in a shared building is responsible for fully insuring and maintaining any part of that building that provides support and shelter, and paying their share of any common maintenance where proper procedures have been followed. Each owner is also responsible for paying their fair share of any repair works, even if the property has been sold, if the works date to a time when they were living there.

Each owner has a right to ask other owners for proof of insurance, to arrange essential repairs, to access a neighbour’s property to carry out the repairs and to recover the costs from others. Equally, each owner has the right to refuse to pay for repairs if these are non-essential, or they were not informed of the works. Further, they have the right to appeal decisions that they did not agree with at the Sheriff Court within 28 days.

Owners normally decide by majority vote on what needs to be done, organising surveys, appointing contractors to carry out works and the appointment of property managers. They can also decide on organising common insurance and running a maintenance account.

It’s really important when undertaking common works to ensure that there is agreement as far as is possible. Much more information is available from The Tenement Handbook and ‘Under One Roof’ website which also advises on a range of issues including the creation of a regular maintenance schedule. It is important to be as fully briefed as possible with professional, and possibly legal guidance.
4.2 **Airtightness (Draughtproofing)**

Like maintenance and the next chapter on the use of space and time, airtightness is an issue in every part of the building. Where it occurs in roofs, floors, walls and windows, this guide makes recommendations in the relevant section, but as a subject it needs to be introduced separately.

Airtightness is inextricably bound up with the issue of ventilation and although they are dealt with separately in this guide, it is important to emphasise from the outset that they need to be considered together. As the saying goes: “Build tight, ventilate right.”

The Importance of Airtightness

As an issue, airtightness has come to the fore in the last five or ten years in Scotland, creeping first into large scale non-domestic regulation and now into domestic new-build regulation. It is a welcome development because of the scale of heat loss associated with draughts. As levels of insulation have increased since the 1980s, the proportion of heat lost due to draughts has increased to the point where it made no sense to increase the levels of insulation required without also addressing airtightness. It doesn’t matter how much insulation you put in a building if the heat can simply bypass it through gaps and holes around the edges.
The scale of heat loss (and other problems) associated with draughts is huge. Although common estimates put air leakage at around 10% of total building heat loss, this is usually because air leakage associated with other components (roofs, windows, walls etc) is counted as part of that element. Taken as an isolated item, the proportion of heat loss in a typical building due to draughts is very roughly 40%. This means that for every £100 spent on heating bills, £40 is due to air leakage. Also, as buildings are responsible for around half of all UK carbon emissions, and as draughts are responsible for nearly half of that amount, then draughts are responsible for nearly a quarter of all UK carbon emissions, comparable to all carbon emissions associated with transport, that is, all car, bus, and train journeys, every year. So while airtightness can feel like a rather mundane subject, it is also extremely important.

Beyond regulatory compliance, the advantages of making a building more airtight include:

- reduced heating bills and carbon emissions
- greater comfort levels
- reduced requirement for heating system, potential capital cost savings
- better control of conditions internally, more reliable, less affected by weather
- reduced risks of fabric deterioration.

This last point is often overlooked and bears further mention. Leaky buildings allow cold air in and warm air out, losing heat and causing discomfort. However that warm air going out was also often relatively moist. This moisture can reach colder, outer parts of the construction where it cools and condenses, leading to a build-up of moisture within the fabric. This moisture in turn can lead to a number of unwelcome outcomes including:

- decay of organic materials, usually timber frames, joists and rafters embedded in masonry
- saturation of insulating materials, reducing their ability to resist heat
- corrosion of metal components
- frost damage, such as spalling masonry on the cold side of the insulation.

Another reason airtightness is important is because it is usually the most cost effective way we have to reduce energy consumption. The difference between the construction costs of creating a leaky and an airtight house is perhaps no more than 1%, yet it could mean a 40% improvement in performance. For those looking for “quick wins” there simply isn't a more cost-effective solution.

Airtightness and ‘Stuffiness’

The issue of airtightness is a little controversial and it is worth briefly reviewing this to enable readers to form their own views on what is an important subject. Many people intuitively sense that an airtight building would necessarily be ‘stuffy’ inside.

The thing to remember is that there are two forms of air movement in any building as discussed in Section 2.2: ventilation and infiltration (draughts). An airtight house with poor ventilation (windows fixed shut / fans not working) will indeed soon become stuffy. A draughty house with the same ventilation problems will also become stuffy, although it might take a little longer. Most of us have experienced stuffy spaces and its likely that these experiences were in ‘normal’ (ie quite draughty) places. The problem was probably an excess of people or inadequate ventilation, but it wasn’t due to airtightness. An airtight home with good ventilation...
will be fine, just as a draughty house with good ventilation will be fine (if a little colder!). Stuffiness is related to poor ventilation – which can be resolved – not so much to airtightness.

However, the threat of ‘stuffiness’ in retrofitted homes is real, and this is not just an inconvenient thing, it can be very serious when it leads to increased risks of mould, and to respiratory problems like asthma and Chronic Obstructive Pulmonary Disease (COPD).

The risk is real in retrofit projects because ventilation is not normally considered as part of the retrofit process – geared as it is towards energy efficiency only. Because ventilation is not generally considered to be part of making buildings more energy efficient, retrofitted buildings can be made much more airtight but without a concomitant ventilation strategy. In other words they are building tight, but not ventilating right, and this often results in poor air quality, damp and mould. The finger of blame is pointed at the airtightness but it is really a lack of adequate ventilation. Until the two are considered together at all times, the risk of airtightness getting a bad name remains.

Suitable Airtightness Targets

In Scotland, new homes currently (2018) need to achieve an air permeability of no more than 7 m³/hr/m² at 50 Pa whereas the threshold in England and Wales is 10. Beyond these figures, the new house has failed and remedial measures need to be taken. If the figure is below 3.5, the Technical Standards recommend mechanical ventilation and conventional extract fans with trickle vents are only acceptable for figures between 5 and 7. Although these new-build regulations do not apply in renovation projects, it makes sense to attempt to replicate similar levels of performance.

The Passivhaus approach when renovating older buildings is known as the ‘ENERPHIT Standard’ and requires an air change rate of 1.0 m³/hr/m³ at 50 Pa. Although air change rate and air permeability are not directly translatable, for most buildings the results for both are fairly similar. Whilst it is not always feasible or cost effective to renovate to that exacting standard, we would generally recommend figures of air permeability lower than 3 for renovation projects but with accompanying carefully designed ventilation and a concerted effort to engage occupants in the ongoing maintenance of good conditions.

Achieving Airtight Retrofit Buildings

Achieving airtight buildings is covered in detail in a previous SEDA Guide: Design for Airtightness, available on SEDA’s website: www.seda.uk.net.

At the design stage, the following should be considered:

• creating a performance specification to establish targets, the methodology for achieving these and roles and responsibilities
• conceiving the building as a series of zones and ensuring that the air control layer is clearly shown on all drawings
• identifying all of the likely penetration points through the air control layer and where possible grouping them to concentrate the areas where airtightness works will be needed
• where possible ensuring that the details for achieving airtightness are visible, simple (buildable) and formed from ‘positive’ mechanical connections, rather than relying on adhesive.
On site, the following should be considered:

- allowing for sufficient inspection of the works and ensuring the Contractor has a nominated ‘champion’ for the airtightness
- ensuring that at least two pressure tests are undertaken; the first when all airtightness layers have been installed, but before these are covered over by the final finishes, and the second towards the end of the process (but not so late that there is no time for remedial works!)
- it can be helpful to carry out thermography while the air pressure tests are being carried out to help everyone involved see if there are any other hidden issues. The first test should also include for an air leakage audit which identifies the causes and locations of all leaks, rather than simply giving an overall air permeability figure.
- there are ‘DIY’ air pressurisation kits available which allow contractors to test their own projects whenever they want, forming an internal QA process which provides training and ensures that there are no nasty surprises when the independent tester arrives at the end
- apart from self-tested results, the final test should ALWAYS be independently commissioned by the client or design team
- SEDA’s ‘Design and Detailing for Airtightness’ includes a useful checklist of common places to inspect for air leakage points.

The infiltration level of a property can be established accurately using a pressurisation test, which measures how ‘leaky’ a building is.
4.3 Space and Time

Renovation does not necessarily entail any changes to the layout of the building, but there are times when improvements in the elements of a building are part of a wider effort to extend or alter the building layout.

Building work of any sort can be expensive and few people are without financial pressures. Sometimes it can be argued that building work will add directly to the value of the property and the money spent can therefore be recouped in time, but this argument is usually harder to make with retrofit. In addition, building work inevitably involves the consumption of some parts of the earth’s resources and the disposal of others. Thus it always makes sense to pause to consider if there are other ways of achieving your goals – for the sake of the planet and pocket alike.

Space

Space in buildings is expensive. We pay to form a secure and weather-proof construction around it, we pay to fill it with both practical and desirable things, we then pay to keep it warm and comfortable, and we also pay to maintain it and keep it clean. In some circumstances we also pay to repair, upgrade and replace parts of it and in some case to demolish it. It pays therefore to think carefully about how we can use space as effectively as we can.

The table in Section 2.3 shows how UK and Scottish average house sizes compare to other, mostly developed nations. What the graph does not show is the several billion people in less developed nations who live in far smaller dwellings. However, the physical size of the space is only a small part of the story. The nature and quality of the space and the way it is used is also of interest. A number of designers now specialise in small or micro-houses and contend that it is all to do with the quality of the design. Small spaces can feel every bit as spacious if well designed, and there are many examples of this, such as the Scottish example, alongside.

Furthermore, the physical space and its nature only tell part of the story because they do not consider occupancy. Even a very large house will feel cramped if it has three generations of a very large family living within.

For those in larger properties, a number of options are available to make best use of the resource, and potentially to help with finances. A room can be offered to lodgers or friends, the house, or some part of it can be shared with members of the family, perhaps elderly relatives who would otherwise be alone. The arrangement can be short or long-term, paid or not and can extend, for example to offering bed and breakfast.

Another issue that impacts on space, and the experience of it, is clutter. While it might seem odd to mention, many people feel overwhelmed by clutter and often assume that the best solution is to extend their property to resolve the problem. It rarely does, whereas investing time in ‘de-cluttering’ and better storage options is cheaper and often more effective. Again, it is not the lack of space that is the problem, but the perception of that space. Storage then becomes a surprisingly important subject because well organised storage not only helps keep things in order, facilitating an easier life, but allows residual living spaces to be ‘freed-up’, with a potential corollary reduction in stress.

In Scotland, many people have too much stuff. This is less an ethical observation than a practical one. While there are many good reasons for holding onto personal momentos and other important items, there is no
doubt that those who have undertaken the process of de-cluttering find it extremely liberating and above all useful. In a guide aspiring to improve the sustainability of the housing stock, it is important to look squarely at the issue and consider the possibilities of living with less stuff, before we look at storage.

It is surprising how much can be gained from approaching the subject of storage with a more strategic approach. Characterise the type of items to be stored and consider where they could best go. Some items are used regularly and need to be close at hand, while others are only used once a year, some are easy to lift, some are heavy and need two hands, some need to be kept warm, some cold, and some items have no such constraints. Some can get wet, some must be kept dry. Some can be displayed, some are best out of sight.

Relating these requirements to available options then allows for a sensible strategy. Low level shelves above the kitchen worktop will help for items used every mealtime, some items could be removed from kitchen cupboards and placed elsewhere, or at high level. Some items could go in the loft, or garage, or garden shed if these are available. Large rooms can be partly sub-divided with storage subdivisions, unused nooks and crannies can be transformed with creative solutions. Nowadays, there are many sources of information and help on this subject.

For those with adjacent gardens a valuable addition can be part-indoor, part-outdoor spaces such as porches, car ports and conservatories. Whilst this isn’t normally an option for those living in tenements and flats, there are sometimes opportunities in retrofitting to provide such spaces. In many 1960s and 1970s blocks, balconies were provided which proved to be little used. In certain retrofit projects, these balconies have been enclosed to provide warmer, more comfortable and above all more useful spaces, adding greatly to the property.

This guide is predicated on the notion of improved sustainability in housing and retrofit so it would be remiss not to mention that overall sustainability is not just achieved through better energy efficient, healthy and comfortable homes. For those contemplating a retrofit, there are many ways in which sustainability, in its widest sense can also be achieved, which may affect the proposals:

- creating spaces to grow and store food (often in cold spaces, not necessarily fridges and freezers)
- spaces for making, repairing and maintaining items
- improved space and arrangements for recycling and reuse, including composting at home
- provision of habitats for flora and fauna, such as ponds, bat boxes, plants for birds, bees and butterflies etc.

Time

The majority of space we paid for is actually empty or under-used for much of the time. For working people, houses are usually empty for eight hours a day or so, while bedrooms tend to be used only for sleeping – eight out of 24 hours, and living spaces are used for perhaps four or five hours a day at best? Of course there are many occupancy patterns, but the point is that most of this expensive space we paid for and continue to pay to keep warm and clean is empty.

In commercial situations where companies wish to extract more value from their properties, it is possible to “sweat the asset” by simply finding uses for spaces when they might otherwise be empty. Flexible working
hours policies help those with different home/work balance and mean the building can be used between, say 7am and 8pm, meaning much more value can be gained from a space that was going to be kept warm and clean anyway. In community buildings, extending the hours of use can make the difference between a financially viable operation or not, and some school buildings have been re-imagined as community ‘hubs’ providing a range of community facilities where there might not have been any previously. There are undeniable challenges with these arrangements, not least with security, but the point is that as a society we can make better use of limited resources.

In domestic situations, this thinking can save money and resources too. The strategy is to take nominally separate functions and simply overlap them where it is feasible to do so. Kitchens and dining rooms in certain social circles were always quite separate but now are often combined. Building a guest room extension for parents who only come for two or three days over Christmas is expensive, whereas the existing study could be furnished with a fold-down double bed. It was only recently that people felt that children needed separate bedrooms. The contemporary penchant for ensuite bathrooms is lamentable from an ecological perspective, but the concept of ‘Jack-and-Jill’ bathrooms with two doors allows for bedrooms to have sole use of a space at times, while allowing the option of access from the rest of the house when needed.

The point in all of this, before proceeding with a ‘business-as-usual’ approach, is to check whether there are alternative solutions that might make better use of the spaces. With careful design, multi-purpose rooms can allow much more creative and engaging use of spaces than is often the case in current Scottish domestic architecture.

This approach can also be extended to furniture. There are now many examples of furniture which can ‘double-up’ to provide more than one function. The most obvious are sofa-beds but there are many others, and they offer the ability to unlock space in a home which might otherwise be unusable, to provide unexpected storage options or alter the way we use spaces. Beds can be raised and delightful spaces created beneath for children, fold-away chairs can be stored separately, extendable tables can be extended for large groups only when necessary, inflatable items like spare mattresses can be stored away when not required and wall-hung items like small tables, chairs, ironing boards and similar can be kept out of the way to create more space in constrained areas.

A final aspect related to time is that of opportunity. For example, if several properties on one street are looking to get the cavity walls filled, or roofs upgraded, it makes sense to take the opportunity to do likewise and potentially benefit from economies of scale. Similarly, if scaffold is going to be required to fix some slates or upgrade a roof, then it makes sense to take the opportunity to look at any works that could beneficially be done while the scaffold is up.

This can also be done pro-actively, rather than reactively and the image shows a comprehensive external tenement retrofit where a variety of separate 30-year maintenance cycles were brought together to share a single scaffold cost, with roofing upgraded, windows replaced and EWI insulation all carried out in one go.
4.4 Roofs and Ceilings

Unless already well insulated, the roof and ceiling are the most important place to concentrate on in retrofit because insulating them effectively will make the greatest difference to saving energy and increasing comfort. Retrofitting these areas carries very few risks to the long term performance of the property and the conservation value of historic buildings. In other words, you get the most benefits, with the fewest problems to overcome.

Lofts – Insulation at Ceiling Level

Important to Know

- The roof takes the brunt of the weather and problems here can work their way down into the building, so the roof represents the number one priority for maintenance.
- Heat in the air rises and so the roof and ceiling also represent the number one priority for insulation and draughtproofing.
- Even if the loft has already been insulated, but not well, then it is still the most cost-effective place to focus.
- It is important that there is a free flow of air above the insulation to keep the roof timbers dry and avoid moisture build-up and decay.

Our Guidance vs Conventional Guidance

Our guidance is different because of the emphasis we place on the many little details. This is because we have seen how much difference they make in reality to the overall effectiveness of the insulation, in what is the most important area to get right. We also place more importance on maintenance, on preparing properly, and the specific type of insulation to be used.

<table>
<thead>
<tr>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>300mm insulation. Lay cross-ways.</td>
<td>300mm insulation. No gaps. Lay cross-ways. Existing poorly laid insulation to be re-laid. Insulate over hoods at lights etc. Create access above to avoid later compaction of insulation. Use ‘soft’ rolls to fit snugly. Use a ‘breather membrane’ over. Natural insulation reduces embodied energy.</td>
</tr>
<tr>
<td>-</td>
<td>Effective insulation reduces mould risk internally & improves comfort. Use of natural insulation reduces respiratory health risk (mainly when installing)</td>
</tr>
<tr>
<td>Maintain air flow above, and at eaves.</td>
<td>Measures noted for Energy, Health, Maintenance and Moisture will all serve to protect building fabric from long-term problems.</td>
</tr>
<tr>
<td>-</td>
<td>As Energy above – emphasis on little details in practice.</td>
</tr>
</tbody>
</table>
Sometimes, preparing the loft can be as much work as insulating it. In this large, but tidy loft, lots of items will have to be removed and the flooring all taken up, as there is no insulation beneath, before a replacement access floor can be re-built and all the stored items put back.

Preparation

• Usually the loft has to be cleared. This one task often prevents any work taking place as it isn’t normally taken on by insulation installers, and in some cases can’t be done by householders. If more agile friends or family members cannot be persuaded to help, then this work can be done by paid odd-job tradespeople.

• It is worth reviewing the loft once cleared to ensure redundant cables and plumbing (such as old water tanks) are removed. Anything else that would interrupt the continuity of the insulation should also be removed, unless it is structural!

• This is the time to renew any services, upgrade electrics and telecoms cables if required.

• All cabling that is not going to be raised above the insulation should be laid in conduit or covered in such a way as to prevent it overheating beneath the insulation (ensuring some air movement around it). (1 – overleaf)

• If there are recessed light fittings in the ceiling below, these often have insulation removed above by electricians to avoid overheating, but this leaves gaps for heat to escape. The correct solution is to fit hoods over these which prevent them from being smothered by insulation while also stopping heat escaping into the loft. (2)

• The size and location of loft hatches can be a problem and any necessary changes should be made before installation starts.

• If the loft is to be used for storage, or if safe access is needed in future to services, then it is easiest to form the structure of the walkway or platform before insulation is installed. (3)

• The best type of insulation to use is a soft roll or ‘semi-rigid’ type so that it is easy to fit snugly between timbers and against adjacent rolls and avoid any gaps. It is also better to use a natural, hygroscopic insulation type. Refer to ‘Insulation Considerations’ in Section 2.2.
Installation

- If there is existing insulation, this can be left in-situ if it is neatly installed, or re-laid wherever required, taking care to identify existing cables. (4)
- The first layer of insulation should be laid carefully between joists making sure there are no gaps, and that where possible, insulation continues tight up to adjacent walls. (5)
- At eaves, achieving a continuous line of insulation means the insulation should be extended as far as possible over the wall-head, but leaving a small gap (25mm minimum) for air movement above if this is the path of airflow. (6) See diagrams overleaf for more detail.
- Subsequent layers of insulation should be laid perpendicular to avoid coincidence of gaps between rolls. Above the first layer of joists, there are sometimes truss pieces which get in the way and care needs to be taken to ensure that the insulation fits neatly around these without leaving gaps. (7)
- Once the insulation is installed, it is advisable to overlay a moisture-permeable ('breather') membrane which is also airtight. This prevents 'wind-washing' which draws the heat from the outer layers of the insulation, reducing its efficacy. It is very important however that the membrane is 'breathable' to avoid condensation forming on the underside. (8)
- If the loft is to be used for storage or access in future then a walkway needs to be built over the insulation and in such a way as to avoid crushing the insulation. It’s best to use timber boards with gaps rather than large format panels such as plywood due to the risk of condensation forming on the underside. Edge strips are advisable to stop feet or stored items slipping onto the insulation and some simple form of barrier is helpful for safety and stability. (9)
- Electric cables not within conduit or protected beneath the insulation
Eaves ventilation space maintained using battens to restrain insulation

Sarking lifted and ventilation path formed using ‘rafter roll’ over rafters

Eaves filled with insulation, roof space ventilated by fitting ‘slate vents’ through sarking

can be laid over the top of the insulation, but care needs to be taken where they penetrate the insulation to make sure there are no gaps where heat can escape. (10)

- Once insulated effectively, the loft can become as cold in winter as outside, so to prevent freezing, any live pipework containing water must be fully insulated, including at all junctions, valves etc. Tanks should have the insulation taken over the top of them, and without any beneath, so that they become, thermally speaking, part of the house below. Insulation used around pipes should be vapour-proof. This is to prevent the moisture in warm air condensing on cold pipework, potentially creating as many problems as a leak in the roof. Needless to say, it is preferable to avoid plumbing in the loft if possible. (11)

- The same is true of air ductwork from mechanical ventilation systems. In a cold loft, any ductwork should be carefully insulated using a vapour-proof insulant to save energy and prevent condensation forming.

- Ceiling hatches should be insulated to the same degree as the rest of the loft where possible. This is easier to say than to do in most cases. With simple, lift-off hatches, a more rigid board type can be used to a similar depth and rigid boards can also be cut around mechanisms for hatches with attached ladders. Also provide a form of air seal when the hatch is closed.

Alternatives

- When insulating a ceiling, it is possible to use loose-fill insulation instead of the rolls discussed above. The same principles apply. Care needs to be taken that the material does not fall through gaps in the ceiling (for example at downlighters) or into wall cavities, nor that it gets blown into piles of uneven depth.

- It is possible to install insulation beneath a ceiling and a number of proprietary materials are available to do this. This can be done in addition to insulating between joists above. The disadvantages are that it reduces ceiling height, and the components tend to be expensive, but one advantage is that a continuous layer of insulation applied like this reduces the thermal bridging effect of the timber joists.

Health & Safety

The most obvious risk is getting in and out of the loft, so ensure a safe and secure ladder is used with adequate space above and below, and handrails for stability. Works should be carried out on crawl boards to avoid stepping between the ceiling joists. Care should be taken where the roof above slopes down to form a confined space, especially in relation to nails protruding through the sarking boards. It is important to set up (if not already installed) both general and additional task lighting, and remember not to cover electric cables as noted above. Most synthetic fibrous insulations carry some risk to respiratory systems and can cause skin irritation, so good quality masks should be worn at all times and skin covered.

How Much is Enough?

Depending on the type of insulation, 300mm of insulation will provide a ‘U’ value of around 0.16 W/m²K which is adequate for most properties and our guidance here is no different from conventional guidance. Beyond this level, the benefits of greater depths are likely to be compromised by
the inevitable areas where that level of insulation is not feasible (eaves, loft hatch etc). Rather than aiming for more than 300mm, it is far more important to ensure all of the gaps are closed, the loft hatch is well insulated and draughtstriped and that there are no ‘weak points’ in the installation generally.

Insulation at Rafter Level

Important to Know

- The roof takes the brunt of the weather and problems here can work their way down into the building, so the roof represents the number one priority for maintenance.
- Heat in the air rises and so the roof is also the number one priority for insulation and draughtproofing.
- Within the rafters, it is important that there is a free flow of air above the insulation to dissipate moisture and avoid timber decay.

Our Guidance vs Conventional Guidance

The biggest problem with insulating at rafter level is that there isn’t usually enough depth within the rafters to get the thickness of insulation recommended. In conventional retrofit, where energy efficiency is the only objective, it makes sense to seek the lowest lambda value for the insulation and so guidance tends to suggest the use of high performance rigid plastic insulants. There are three problems with this in practice; it is very difficult to cut and fit the boards perfectly, so there are always air gaps which compromise the high performance boards, the insulation is compromised anyway by the timbers, and using moisture-impermeable materials forces any moisture through the timbers, placing them at greater risk of moisture damage. Carried out carefully, our guidance will lead to a solution as effective in reality, but with greater benefits to the long term performance of the building. Our guidance is different because of the emphasis we place therefore on the many little details, including maintenance.

<table>
<thead>
<tr>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulate between rafters. Supplement with internal insulation if needed.</td>
<td>Insulate between rafters. No gaps. Supplement with internal insulation if needed. Use ‘semi-rigid’ rolls to fit snugly. Natural insulation reduces embodied energy. Mid-way opening of ceiling finish allows for a neater and more complete installation.</td>
</tr>
<tr>
<td></td>
<td>Effective insulation reduces mould risk internally & improves comfort. Use of natural insulation reduces respiratory health risk (mainly when installing)</td>
</tr>
<tr>
<td>Maintain air flow above, and at eaves.</td>
<td>Measures noted for Energy, Health, Maintenance and Moisture will all serve to protect building fabric from long-term problems.</td>
</tr>
<tr>
<td></td>
<td>As Energy above - emphasis on little details in practice.</td>
</tr>
</tbody>
</table>

Energy

Health

Fabric

Modelling
Preparation

- In some cases, the external roof finish can be removed and insulation can be inserted between rafters from outside. If internal finishes are retained, this allows for simple installation leaving a 25mm gap along the outer edge of the rafters before replacing the roof finishes.
- Even if the roof finish isn’t to be replaced, it is often worth removing the first half-metre or so up from the eaves in order to inspect the condition of the rafter ends and the wall-head (1). Any repairs can be carried out and insulation can then be easily installed along the eaves, ensuring that ventilation is maintained above the insulation.
- Electric cables within the rafters should be re-located or placed within conduit to prevent overheating when covered by insulation. Ideally, they would be placed in a service void created on the inner side of the structure. Where the cables penetrate the inner faces of the ceiling, they should be sealed carefully to prevent moisture and warm air from inside escaping into the construction. (2)

Installation

- If the ceiling finish is original lath & plaster and it is desirable to avoid damaging this, the question is how to get the insulation into all areas. It may be possible to push rigid boards in from a small attic space (3), or by using a long thin implement, pushing down a softer roll-type insulation. However in this scenario, it is hard to be sure that the insulation is filling all gaps well.
- Whilst still retaining most of the original finish, it is possible to cut a horizontal strip mid-way within the coombe to allow insulation to be more carefully installed, extending neatly to the eaves and fully filling the space available (4). A 600mm wide strip allows for manoeuvring and can be replaced by a matching lath & plaster or a modern equivalent with all joins made good and re-decorated. Sometimes

Conventional Guidance vs. Our Guidance

<table>
<thead>
<tr>
<th>Category</th>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABRIC</td>
<td>(Air flow above)</td>
<td>As Energy above.</td>
</tr>
<tr>
<td>MOISTURE</td>
<td></td>
<td>Air flow above insulation removes moisture safely. Hygroscopic insulation helps protect timber.</td>
</tr>
<tr>
<td>PEOPLE</td>
<td></td>
<td>Invest in upgrading services etc. before installing insulation (less cost and disruption later). Mid-way opening of ceiling finish allows for a neater and more complete installation.</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td></td>
<td>Soft insulation works better between timbers. Hygroscopic material helps protect timber from moisture problems.</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td></td>
<td>Ensure all external maintenance carried out first. Review existing services / condition before starting. Electrics above insulation (or in conduit).</td>
</tr>
<tr>
<td>SIGNIFICANCE</td>
<td></td>
<td>Unlikely to be relevant, but removal of possibly original plasterwork may be an issue. Otherwise, as Fabric above.</td>
</tr>
</tbody>
</table>

In this attic room, timber linings to the coombe and wall have been removed, wood fibre insulation installed and linings replaced.
© Historic Environment Scotland
ceilings have timber linings or similar boarded finishes, which make removal and replacement easier.

- It may be possible, or desirable to remove all of the ceiling linings. The advantages of this are that it makes installation of the insulation much simpler, and allows for the installation of a vapour control and airtightness membrane before replacing ceiling finishes. The disadvantage is an increase in cost, disruption, mess and waste of resources.
- More often, it is possible to form the horizontal strips mentioned above, retaining the majority of the internal finish while ensuring insulation is installed neatly.
- The best type of insulation to use is a semi-rigid type so that it is easy to fit snugly between timbers and against adjacent rolls without the need to be perfectly cut to size. In order to protect the roof timbers from the risk of moisture build-up, it is also better to use a hygroscopic material.
- However it is achieved, insulation should be inserted between each rafter, fitting tightly at all times, flush with the inner face and leaving about 25mm to the outer edge as free area for air movement.
- At the eaves, the insulation should be extended as far as possible over the wallhead, leaving a 25mm gap for air movement if this is the path of airflow. See diagrams for more explanation.
- Often in ‘room in the roof’ spaces, there is a small ‘attic’ section formed by the cross-piece of the roof truss, and in these situations the guidance for lofts can be used.
- In attic rooms, it is common to find dormer windows. With the rest of the roof insulated, these will represent a weak spot in terms of heat A consequence of warm, moist air entering the loft area but not being adequately ventilated away, hence the importance of ventilation at the eaves.
loss. Although it can be quite a fiddly job, they need to be insulated to a similar level as the adjacent roof. This involves three separate tasks: the window, the ceiling and the side walls, all of which may require different treatments.

- **Rooflights** are extremely effective at bringing in light, ventilation and fire escape from certain spaces but they represent a ‘gap’ in the insulated envelope for heat loss. In conservation areas and on listed buildings there may be a requirement to use ‘conservation’ rooflights, but it is also important to use a rooflight with a good overall U-value and good airtightness. Quadruple glazed units and special insulated flashing packs are available which ensure a better insulated and airtight installation.

Alternatives

- It is also possible to install insulation across the inner face of the ceiling. A number of components are available for this including composite boards of plasterboard finish with rigid insulation bonded to the back. Installing these is quicker and simpler than the solution above and this technique avoids the thermal bridging associated with the rafters. However, the components generally used are relatively expensive, and as this work reduces ceiling heights, often in already constrained spaces, there are limits to its applicability. As a solution, it is unlikely to provide enough insulation on its own, but if there is headroom and budget, then it can be used to supplement the insulation within rafters described above. We have shown a natural, rigid board such as wood fibre fixed to the coombe with a plaster finish as an option. (9)

- An alternative to the composite panels described above is to install battens across the face of the ceiling and insulate between them. This solution can reduce thermal bridging by running battens perpendicular to the rafters and allows for the installation of a vapour control layer.

- The advice given here is equally applicable to flat roofs but because flat roofs have to have a continuous waterproof layer to keep water out, it is even more important to ensure a good route for ventilation above the insulation, and usually, a robust vapour control layer beneath.

Health and Safety

There is usually a need to access ceiling areas above head height and in these cases, care should be taken to ensure safe access and a safe and secure working platform. Comments made above about the risks from fibrous insulation remain relevant and it is common to find nails protruding through the timber sarking boards which present an obvious risk.

How Much is Enough?

In theory, a level similar to that installed in a loft is required, ie about 300mm achieving a U-value of around 0.16 W/m²K. However, it is unlikely that this level of insulation can be installed within existing rafters, and even adding additional insulation beneath the ceiling may not get close to this level. In reality, it is more important to achieve a continuous layer of insulation, across small loft spaces, around dormers and rooflights, and linking neatly with wall insulation as this will reduce heat loss more effectively in practice.
4.5 Walls

While roof and floor construction has changed little across Scotland over both region and time, wall construction varies considerably. Traditionally, wall construction depended on what was locally available while in the 20th century construction types began to diversify. Buildings are often described simply by their wall type because of this variation as it is the principal relevant technical characteristic. This makes it more difficult to provide guidance that covers all wall types, but while we have restricted the number of wall types, most of the key principles discussed are widely applicable.

Of the 2.5 million dwellings in Scotland, just over 3/4 (over 1.8 million) have cavity walls, while around 1/4 (620,000) have solid walls or a range of other types like timber frame. Only a small percentage (15%) of the solid or ‘other’ walls have been insulated (as of 2016) while around 3/4 of the cavity walls have already been insulated.

Cavity Wall Insulation

Cavity walls were introduced well over 100 years ago to reduce water penetration through solid walls. The idea of filling this cavity therefore might appear perverse. Many new masonry buildings are built with partial cavity insulation, normally in the form of rigid batts attached to the inner leaf and slotted over wall ties. This is not something that can be done in a retrofit situation, so we concern ourselves here only with ‘retrofilled’ cavities – fully filled by injecting insulation into the cavity after the building has been completed.

Despite the obvious drawback of filling the cavity put there to avoid water penetration, the ‘retrofill’ industry has grown and since 1996 over 6 million houses have had their cavities filled in an effort to reduce energy consumption and make homes more comfortable. There is no doubt that in many cases, this has indeed been the result, and the technique avoids most of the obvious disadvantages of both external and internal wall insulation, so there are undoubtably benefits to be had from cavity fill.

However the industry has been dogged by problems due largely to the fact that insulation can indeed draw moisture across the cavity, and being an unseen operation, it is difficult to check the work and be certain that it has been completed properly. These two intrinsic problems have been combined with poor practice by installers meaning that many installations suffer from problems.

Important to Know

- Cavity fill can be an excellent solution reducing energy consumption, carbon emissions and improving comfort, and at little relative cost.
- However, cavity fill can lead to problems and so it is important to carefully review the viability of this technique in each property and insist on the best practice installation and aftercare.

Our Guidance vs Conventional Guidance

The installation of cavity fill insulation is represented by the National Insulation Association (www.nia-uk.org) who also provide support for external and internal solid wall insulation works. They host the Cavity
Insulation Guarantee Agency (CIGA) which guarantees works undertaken. Guidance to best practice is given along with guidance on handling complaints and wider guidance on how companies should operate.

We have not included a table of differences here because our guidance is only different in two quite specific ways. Conventional guidance as written is extensive and reasonable, but is not always followed carefully. Installers are usually the ones who undertake the review and it is obviously in their commercial interests to undertake the works, even if the property might not be suitable. In addition, the full extent of preparatory works sometimes required can make the operation far from cost effective so there is a clear economic incentive to avoid some of the most onerous tasks.

Our first recommendation therefore is that owners ensure that all guidance is strictly followed, and to support this, we further recommend that an independent specialist is engaged to undertake the suitability review, as well as a thorough check afterwards.

Preparation

Before starting it is important to assess the property against a range of criteria that inform suitability for installation.

- BRE have produced a map of the UK which indicates four zones of exposure. The higher the exposure, the higher the risk of water being forced across the cavity under wind pressure. Clearly however, local geography and features will have an effect, and some judgement is required in interpretation. The risks increase at greater height from the ground so installations over 12m from the ground are subject to different guidance.
- A number of individual features of a building might offer clues as to suitability. Existing signs of dampness and/or works to rectify dampness might indicate a higher than normal risk, structural problems like leaning, bulging or cracking might indicate problems that could exacerbate, or be exacerbated by installation of insulation. Buildings should be checked externally and internally noting also where changes might have been made (eg old openings, now blocked up). External walls where the mortar beds are recessed create a greater risk of rainwater sitting and being blown in.
- In all cases cavities should be checked carefully. A borescope survey should be undertaken in several places in addition to extensive external and internal visual surveys. Cavities less than 50mm wide are at greater risk of water penetration across and there may be areas of the cavity which for one reason or other make installation difficult or impossible. Wall ties should be checked for adequacy and also to ensure they are not running downwards towards the inner leaf (which could lead to water running across). Sometimes, cavities are filled with lumps of mortar from untidy workmanship and these can block the cavity and help move moisture from one side to the other. Cavities are not always closed off, for example in an attic, or where they have been penetrated by services, so an important part of any survey is to ensure that they are closed off before insulation is pumped in. Check that there are weepholes at the base sufficient to drain any water in the cavity away safely.
- The most important aspect of the preparation is to establish whether the external wall is adequate to keep water out of the cavity. Any weaknesses in this wall may previously have been managed by the ability of water to run out within the cavity and exit through weepholes at the base. When insulation is installed this ability will be compromised and so the first line of defence becomes more important.
Any maintenance or improvement works required will need to be included in the works.

- Complications occur where a cavity extends beyond the boundary of the property, where it is part of a terrace or block of flats for example. Cavity barriers should be installed unless the whole block is to be insulated, but this increases costs of course. Where cavities extend below ground level, to avoid problems insulation should not be installed unless it is quite clear how water will escape during temporary flooding.

- Complications can also arise when the main external wall to be insulated is covered by a subsequent extension such as a conservatory. Bespoke arrangements need then to be agreed and documented in respect of that area.

- It is important to check any services which run through (or sometimes within) the cavity. Any cables with pvc sheathing (most) could be affected by polystyrene beads and should be either moved, replaced with non-pvc alternatives or placed within a conduit. At every penetration, there is a risk of the insulation emerging from the cavity under pressure, so all penetrations need to be carefully sealed.

- Some wall vents are formed by a continuous casing that extends through the cavity, but some vents (for example, to solums beneath the ground floor) are formed by an air brick in each masonry leaf. Cavity insulation would block the air path between them and so these will need to be made good such that the flow of air remains unimpeded.

- The location of chimneys is important where they exist (often blocked over so difficult to know) to ensure that insulation is not inadvertently pumped into the chimney itself.

- It is important that any defects in the building as pre-existing are carefully documented before any works take place. This protects both parties: installers are protected from spurious claims, while the most likely way that a guarantee won’t be honoured is the argument that the defect existed before the works took place. We suggest that this process is carried out by an independent specialist either instead of, or in addition to the documentation provided by the installer.

- Once insulated, some homeowners find that draughts which emanated from the cavity will be reduced. This is largely a good thing, adding an airtightness benefit to the installation, but it also raises the risks associated with lack of ventilation. For this reason we suggest that all cavity fill installations are also accompanied by a review of, and where necessary, an upgrading of the ventilation arrangements in the property. For more information on this refer to the section on ventilation.

- In Scotland a building warrant application is not required for cavity fill insulation, although the work should comply with the regulations.

- Grants may be available for the installation depending on the area, property type or occupants, so it is worth contacting The National Insulation Association (NIA), The Cavity Insulation Guarantee Agency (CIGA) or The Energy Saving Trust (EST), all of whom will be able to advise.
Installation

- Cavity fill needs to be undertaken by suitably qualified tradespeople. The NIA and CiGA can provide contact details for local companies and you can request the BBA certificate which accompanies any registered installation. The CiGA guarantee is provided once the work is completed.

- There are three main types of insulation commonly used and in this case we do not recommend that any alternatives to these are used. The cheapest is a form of mineral wool fibre but this form appears to be the form most commonly associated with failure and we believe should be avoided mainly due to its capacity to ‘hold onto’ moisture, should any get into the cavity. Various foam products are also used but again we would counsel against these because being impervious to moisture they more fundamentally alter the nature of the wall making it more difficult for moisture to escape. The third, and generally most expensive involves small polystyrene (EPS) balls, installed with a weak adhesive mix to help them form a fairly robust material within the cavity which holds its shape and reduces the risk of them pouring out of the cavity at any unsealed openings. EPS balls appear to be less liable to slump than mineral wool, and do not ‘hold onto’ moisture in the same way. Unlike foam they are intrinsically vapour permeable and because they leave gaps between balls, there remains greater potential for both moisture and air movement, allowing the cavity to perform a little bit as it did before, albeit much reduced. In short, EPS beads appear to represent the lowest risk option in the long term.

- Usually, the insulation is injected from outside using the mortar beds between brick or stonework and at about 1.2m centres. The holes are then filled up afterwards using a matching material. In some cases more holes will be required around obstacles like windows and where access isn’t possible from outside, by agreement it might be necessary to inject some insulation from inside.

- A complication which is not easy to solve is that of thermal bridging, usually at openings in older buildings. Around doors and windows in older cavity walls, the inner masonry leaf ‘returns’ to form a solid wall around the opening for robustness. Structurally this makes sense, but in terms of insulation it creates a problem because heat is more readily transferred. When the cavity fill is installed, this area will become colder than the warmer areas around and may be subject to increased risk of condensation and mould formation. It may be advisable to provide additional insulation on the inside to avoid this. The diagram at the top of the page shows such an arrangement but clearly doing this around every window and door considerably increases costs, not just of the work itself, but for redecoration of all rooms.

- Once the installation has been checked and holes made good that should be it. All combustion appliances are checked to ensure they have been unaffected. Associated works recommended such as ventilation should also be considered but in addition we recommend undertaking a thermographic survey to see, as far as possible, if the works have been completed fully. It is only fair to let the installer know that you intend to carry this out and since thermography works best when there is a significant temperature difference between inside and outside, it can sometimes only be done in the colder months.
Alternatives

Where the property is found to be unsuitable for cavity fill due to likelihood of water penetration from outside, one possibility is to install the insulation as planned, but to also install some form of additional weatherproofing to the outside of the building as well. This could be in the form of a rain screen cladding (for example timber cladding, or large format boarding, or even matching render over a mesh substrate) or it could be external wall insulation. Clearly this is far less cost effective initially, but there is some logic in the proposal. Some cavity wall housing cannot be made sufficiently weatherproof due to location or exposure. Internal insulation may not be feasible for a variety of reasons and if cavity fill isn’t safe, then the only option is external insulation. However, installing this external layer makes little energy efficiency sense when it exists ‘outside’ of the ventilated cavity. Carrying out both means that the building can be effectively insulated and robustly protected in the long term.

Health & Safety

Cavity wall insulation raises few Health & Safety issues. Health risks associated with mineral wool fibres can be avoided by making sure there are no escape routes from the cavity, and the drilling and installation works can cause noise and some vibration disruption. Access to higher areas would usually involve working from height in some form and any ancillary works (such as breaking out masonry to install cavity barriers) carry their own risks.

How Much is Enough?

Clearly the cavity sets its own constraints due to thickness. The thermal resistance of the insulation injected is far less important than ensuring that the cavity is fully filled, and keeping the cavity dry.

Solid Walls: Internal Insulation (IWI) vs External Insulation (EWI)

About a quarter of all buildings in Scotland are solid walled, usually stone but sometimes brick or concrete. Many remain uninsulated and a significant part of the Scottish Government’s spend in the next few years will be on wall insulation so it is worth taking a moment to consider the ‘best’ option. SAP does not really differentiate between internal and external insulation of solid walls and concentrates instead on the U-value required, which can be achieved using either method.

Typically, internal insulation is the preferred route for insulating solid walls due to the following advantages:
1. it is usually cheaper (this depends very greatly on circumstance)
2. no external alterations are required, so there are no issues with planning or with neighbours
3. no restrictions on when the work is carried out due to season or bad weather
4. no restrictions related to the building type or location (eg: high rise blocks)
5. usually no need for specialist installers. DIY is possible, which can also make it cheaper.
There are some well known disadvantages of internal insulation which can swing the decision the other way in some cases:
6. the need to decant occupants, or have empty properties.
7. the loss of internal space, which is more critical in smaller spaces.
8. in some cases, work can be complex, for example where there is cornicing, extensive servicing or historic internal linings and facings.
9. in some cases there may be issues with fixing heavy loads to less robust internal finishes.
10. thermal bridging (via internal structure) can lead to problems and reduces the efficacy of any measures installed.

By and large all of these issues are understood within the construction industry with the possible exception of number 10. However, there are a further five points relating to internal insulation, which are more technical in nature and relatively little appreciated. These represent ‘universal’ risks associated with internal insulation of solid walls – none are associated with external insulation – and which need to be understood better:

11. lack of protection from the weather. Unless the wall and all joins are very well maintained, there is a risk that water can still enter the wall, for example via cracks, leaks or just soft stone / joins. Climate change will exacerbate these concerns with windier and wetter weather. Combined with point 13 below this means that internally insulated walls are more susceptible to damage and decay over time. Put another way, one of the biggest advantages of external insulation is that it can save you carrying out maintenance that would otherwise have been necessary, because you are providing a new external finish.

12. insulating on the inside means that the solid wall becomes isolated from the warmth of the internal rooms and becomes cold for longer periods. This creates an increased risk of interstitial condensation occurring within the wall, usually near the interface of insulation and existing solid wall where it is more difficult for it to escape. This is less of a problem with breathable internal insulation, but these are more rarely used.

13. most common insulants used are non-breathable. Using these internally means the wall cannot dry out towards the inside as it often did before. When linked to both points above, with interstitial condensation forming in the centre of the wall and rainwater potentially entering from the outside, the moisture load on the wall is raised considerably, creating a number of potential long-term problems.

14. insulating internally involves isolating the available thermal mass meaning the resultant space does not benefit from its capacity for thermal buffering. If this is coupled with a lack of hygroscopic (moisture) buffering and depending on the heating and ventilation regime, this can lead to increased fluctuation in temperatures and relative humidity which is associated with an increase in health risks.

15. the issues of thermal bridging and air leakage means that internal insulation is inherently limited in terms of energy saving unless it is carried out meticulously.

Although they are not well known, these five characteristics of internal insulation represent considerable risks to the basic health of both the occupants and the building fabric itself, as well as meaning that energy savings can be less than anticipated. For the reasons above, we recommend that in most cases, internal wall insulation should NOT be undertaken. If it is, then the following guidance will ensure that the anticipated savings are realised, and that the health of both occupants and the building are safeguarded.
Internal Solid Wall Insulation (IWI)

Important to Know

- Internal wall insulation of any sort should only be carried out if you are sure that the condition of the outer roof, rainwater goods and wall are good, that is, there is no way that water can get into, and trapped in, the wall from the outside.

- Internal wall insulation is best undertaken only if you can be sure that the insulation will be fully continuous, avoiding all thermal bridging and air leakage.

- Due to the risks associated with interstitial condensation which will occur with any internal form of insulation, it is best if the level of insulation is less than typically specified. In other words, aim for modest U-value upgrades, concentrating instead on the continuity of the insulation and airtightness measures installed. This will mean energy savings will be made in reality, even if this is not accurately represented in SAP.

- Because of the risks of solid walls becoming saturated, and unable to dry out to the inside, it is critical that the insulation and internal finishes used are fully ‘breathable’ that is, vapour permeable.

- To help counteract the likely internal temperature fluctuations caused by internal insulation, it is best to use an insulation material which has some density. Common synthetic insulations have little or no density - their whole modus operandi is to avoid this – but some insulations are actually quite dense which means that that there is some thermal mass, and natural products like woodfibre have some moisture buffering capacity as well. In combination with a hygroscopic internal finish, this will beneficially moderate temperature and humidity swings internally, safeguarding the respiratory health of the occupants, see the diagram on page 14.

Our Guidance vs Conventional Guidance

<table>
<thead>
<tr>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various options, but high performance insulation reduces thickness required, less space loss & lower U-value preferred.</td>
<td>Lambda / U-value less important than continuity of insulation. No gaps - in insulation or air / moisture control layers (eg to window reveals, into floor depths above and below etc.) Maintained (dry) wall reduces heat loss. Natural insulation reduces embodied energy.</td>
</tr>
<tr>
<td>DPC or air gap between internal frame and solid wall.</td>
<td>Effective insulation reduces cold spots and mould risk internally & improves comfort. Use of natural insulation reduces respiratory health risk. Use of dense insulation reduces fluctuations in temp / RH.</td>
</tr>
</tbody>
</table>

In this trial IWI installation, there is no maintenance of the outer wall and water is finding its way in. There is no designed ventilation in the cavity so the risk is that this moisture will collect unseen and could lead to decay of the timber floor and wall frame over time.
The issue of internal insulation is where this guide differs most from conventional guidance. Current approaches to internal wall insulation are much more problematic than most people realise, with potential to do widespread damage to our built heritage whilst not necessarily creating the savings expected.

Conventional guidance focuses on attaining good U-values, primarily through high performance insulation products, whereas BPE has shown that this does not necessarily lead to good performance overall - and therefore we concentrate more on the continuity of the insulation, and airtightness / vapour control membranes in order to close the gap between anticipated and actual improvement. High levels of internal insulation serve to increase the thermal separation of the original masonry wall which in turn increases the risk of moisture problems. Therefore, we recommend relatively modest levels of insulation and that a ‘breathable’ material is used to reduce risks associated with trapped moisture.

Drawings representing typical (but poor) practice as well as our recommended approach are shown overleaf and opposite each other for direct comparison. We should stress that the purpose of these drawings is to illustrate the sorts of issues which need to be addressed and in the case of the typical / poor practice drawing indicate very much a ‘worst case’ scenario. Numbers relate to the problems / solutions discussed.

<table>
<thead>
<tr>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELLING</td>
<td>As Energy above – emphasis on little details in practice.</td>
</tr>
<tr>
<td>FABRIC</td>
<td>As Energy above.</td>
</tr>
<tr>
<td>MOISTURE</td>
<td>VCL internally, usually part of composite board.</td>
</tr>
<tr>
<td></td>
<td>Impervious internal finishes to be removed. Vapour permeable and hygroscopic insulation helps protect construction from saturation. Continuous VCL protects construction from internal vapour pressure, while emphasis on maintenance reduces risks from outside. Modest U-values mean reduced risk of interstitial condensation.</td>
</tr>
<tr>
<td>PEOPLE</td>
<td>Invest in upgrading services etc. before installing insulation (less cost and disruption later).</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td>Proposals combine existing construction with new, working together, rather than separate internal ‘shell’</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>Emphasis on ensuring all external maintenance carried out first. Electrics in service void.</td>
</tr>
<tr>
<td>SIGNIFICANCE</td>
<td>Cornicing either removed or left in-situ.</td>
</tr>
<tr>
<td></td>
<td>Emphasis on continuity of insulation could lead to removal of cornicing etc. but where internal finish is significant, this should be retained, but could be replaced over insulated finish.</td>
</tr>
</tbody>
</table>
alongside but we have used these numbers below to help identify particular items on our proposed detail.

There are various common configurations of IWI:

1. Insulation is tight against the wall with internal finish applied directly over, ie there are no air gaps. The disadvantage of this arrangement is that any service boxes installed into the wall will compromise the insulation and could lead to cold spots and condensation / mould locally.

2. A cavity is created between the insulation and wall usually using battens. The disadvantage of this arrangement is that in many cases, air leakage from external sources is free to flow behind the insulation and usually finds its way into the building or cools the internal surfaces as thermal bypass. The potential advantage of this is that the air movement may serve to dry the external wall, although this cannot be controlled. Unless an additional service void is created on the internal face of the insulation, this arrangement still suffers from the compromise of insulation when installing services boxes.

3. Insulation is placed tight against the wall with a service void installed over. This is the configuration we have chosen because it avoids the disadvantages noted of the other two arrangements.

Preparation

- The first thing is to ensure that the exterior of the wall, including the roof work and guttering, and ground areas are all in good condition as described elsewhere, keeping the wall dry [14]. Maintenance is always important of course, but adding internal insulation increases the risks associated with poor maintenance. Ideally cement renders and pointing will be removed in their entirety and replaced with lime-based alternatives. This is easy to write, but far harder and more expensive to carry out in reality and needs to be fully accounted for when weighing up the relative costs of internal and external insulation.

- In order to ensure that moisture cannot be trapped within the wall, it is important that there are no impermeable layers left on the wall before it is insulated. Old wallpapers and paint should be removed to get back to a suitable substrate, usually either the masonry itself, or a lime-based plaster finish.

- If the existing wall finish is of historic value or has other significance, it may need to be retained, in which case refer to the first alternative detail discussed below.

- Depending on circumstances, it may be necessary to extend the insulation into the floors above and / or below which may mean removing ceiling or floor finishes adjacent to the external wall [2]. Again, this is easier to write than to do, and adds to the workload, cost and disruption of the works.

- Existing cables and other services can be placed within conduit to be buried within the insulation although this will mean a reduction in the depth of insulation, the need to cut around it and an additional penetration through the airtightness layer. Better therefore to loosen / disconnect, to be reconnected / re-installed on the warm side of the insulation and airtightness layer once these are installed.

- If windows and doors are to be replaced or repaired, it is best if this is undertaken before the insulation is installed so that the insulation can be carefully fitted to, and sealed against window frames.
Common Issues with Conventional Internal Wall Insulation

Energy Problems
1. heat loss via gaps in the insulation
2. heat loss: no insulation across floor joist junction with wall
3. heat loss around window: insulation is not taken into reveals
4. air leakage around window
5. increased heat loss due to saturation of wall in places
6. thermal bypass: cold air behind plasterboard cools internal surfaces increasing radiant heat loss
7. thermal bypass: cold air flowing behind plasterboard draws away heat within fabric to outside
8. high performance insulation with high embodied energy

Comfort & Health Problems
9. discomfort due to draughts
10. condensation and mould forming on cold surfaces
11. internal insulation reduces access to thermally massive / hygroscopic surfaces, increasing fluctuation in temperature and humidity, with accompanying increased health risks
12. reduced IAQ: increased presence of mould spores, increased humidity, VOCs etc. from synthetic materials

Building Fabric & Conservation Problems
13. loss of original cornicing / plaster / linings, both a conservation loss and a resource / waste issue, more to landfill
14. opportunities for maintenance and repair not taken, with conservation and practical implications (downpipe fixing loose, downpipes blocked / water flowing into hole created, crack in cill, cracks in render and missing / boss render). This also creates H&S issues if masonry falls
15. combination of interstitial condensation, gaps in insulation, rainwater penetration, lack of breathability and capillary action create moisture spread between insulation and wall - ideal conditions for rot
16. increased risk of rot / insect attack of timber safe lintols
17. increased risk of rot / insect attack of floor joist ends
18. saturation of wall leading to increased risk of leaching of salts, failure of mortar, spalling of masonry to outer faces

Typical Practice:

The drawing on the left shows a range of problems which can result from poorly conceived and installed internal wall insulation. The drawing on the right shows our recommendations for avoiding almost all of these problems and achieving in reality an energy efficient, healthy, and durable installation.
Our Proposal:

RECOMMENDED INTERNAL WALL INSULATION SOLUTION

Energy Solutions
1. no gaps in insulation, all joints / corners taped
2. insulation taken across floor depth and taped against all joists
3. insulation taken into all reveals.
4. window fully taped / sealed to surrounding wall (no air leakage)
5. wall remains dry: better insulation
6. no thermal bypass: no cold air entering, insulation tight to wall: internal surfaces remain warm
7. no thermal bypass: no cold air behind plasterboard so no heat loss
8. natural, hygroscopic insulation with lower embodied energy

Comfort & Health Solutions
9. no draughts, greater comfort regardless of air temperature
10. all surfaces are relatively warm: less risk of condensation and mould
11. relatively dense and hygroscopic insulation offers both thermal and moisture balancing mass, so temperature and RH fluctuations from loss of access to masonry not as problematic
12. minimal reduction to IAQ through use of natural materials, non-toxic finishes, more balanced RH, less risk of mould

Building Fabric & Conservation Solutions
13. loss of original fabric still an issue, but refer to alternatives for an approach which avoids all removal of original finishes
14. external maintenance carried out first. downpipe cleared, fixing repaired, render repaired, all pointing and render in lime to allow wall to dry out, crack in cill repaired. no H&S issues with insecure masonry
15. vapour permeable insulation + equalising coat reduces risks of interstitial condensation; condensation that does occur is diffused within construction and can dissipate
16. reduced risk of rot / insect attack of timber safe lintols (dry wall, warm surfaces, moisture can dissipate internally)
17. reduced risk of rot / insect attack of floor joist ends, same reasons as above
18. wall remains relatively dry, thus reduced risk of leaching of salts, leaching of mortar, spalling of masonry to outer faces via freeze / thaw action etc.
Installation

• Most systems require an ‘equalising’ plaster layer initially [6]. This may not be required if the substrate is smooth and level, but this layer usually fulfils several roles, including drawing moisture from the wall, filling out irregularities in the wall surface or simply providing an adhesive surface against which to temporarily affix the insulation boards.

• Window reveals should receive as much insulation as is feasible [3], assuming this will always be less than the wall itself and the wall between floor joists beneath should be insulated and made airtight first [2], so that floorboards can be replaced allowing for the safe insulation of the rest of the walls.

• Masonry partition walls represent a thermal bridge and it is rarely appropriate, safe or cost-effective to remove these. Apart from simply accepting this and acknowledging the risks of cold spots here, conventional wisdom suggests that these walls should be insulated internally for at least 60% ‘back’ from the external wall. Where this is technically possible and acceptable, then it should be carried out. Not being subject to the complex moisture issues of external walls, it is possible in these situations to use thinner and/or non-breathable insulation which helps to minimise the ‘step’ in the wall surface that this creates.

• Insulation boards can applied to the main areas of wall. There are various ways in which these can be affixed, sometimes a mix of both adhesive and mechanical fixings [8]. It is important that the boards all fit together neatly with no gaps anywhere, including at all corners.

• There is some debate about the value of an air barrier and vapour control membrane. In our view, as long as the ventilation system is providing a reliable under-pressure meaning that moisture is always being removed from the property then it is usually acceptable to go without a specific membrane. It is however important to seal all of the insulation joins and so these should be carefully tapered using a suitable tape recommended by the manufacturer [1].

• If in doubt about the use of a membrane, it may be wise to model the wall using one of various hygrothermal modelling tools, such as ‘WUFI’, ‘DELPHIN’ or others. A number of manufacturers offer this as evidence of the efficacy of their products. If a membrane is used, it is important that it is an ‘intelligent’ type which allows vapour back into the property at low pressure. If a conventional membrane is used, there is a risk that moisture in the wall can become trapped.

• Once the insulation (and membrane if required) is installed, re-affix all services within a service void. In this way, none of the services need to penetrate the membranes or insulation meaning the performance of both are safeguarded.

• Any sort of conventional finish can then be affixed to the battens, including plasterboard, timber lining, or some form of mesh and lime or clay plaster finish and finished with decoration as necessary. Bear in mind that conventional paints tend to be impervious to moisture and so it is important to use vapour permeable paints, especially if used on a plaster finish applied directly to insulation.

Alternatives

• A form of insulation trialled by Historic Environment Scotland was to inject a variety of insulations behind existing lath and plaster. Results were mixed but mostly acceptable. The main concern is that it is difficult to control quality with a likelihood of awkward, hard to reach areas being missed leading to cold spots. On the plus side, this technique allows almost all of the existing finish (usually lath
and plaster) to be retained which is a valuable resource – saving and conservation gain. In areas where the existing finish has significance, then this is an ideal technique to balance energy saving with conservation, with minimal disruption. As in the main example, it is very important when undertaking this technique that the external face of the wall to be insulated is well maintained.

- Another technique is to install an insulating plaster directly onto the prepared wall. This technique has some advantages, mainly that it represents only one or two operations and so is likely to be much cheaper, quicker and simpler to undertake. The modest U-value improvements are not a problem (although they may be for SAP / EESSH compliance), but this technique suffers from compromises where service boxes are installed within the depth of insulation. Where this can be avoided, for example through surface mounted services, it may offer a good solution to IWI in many cases.

Health & Safety

Removal of existing finishes can be of some concern. Beyond simple generation of dust, additional concerns surround animal hair which is sometimes found in traditional plaster and there are issues surrounding the removal of lead paint. If the furniture of occupants is left in the rooms, then it is important that it is protected from dust. Rooms should be sealed while works are undertaken to stop the spread of dust to other spaces in the property. It is assumed that works can be carried out from inside and so there are no issues associated with working from height, nor confined spaces. In some cases, we recommend that the insulation extends into the depth of the floor beneath a room and in these situations, it will be necessary to exercise greater care around the gaps in working platform created.

How much is enough?

This depends greatly on the masonry wall itself. We would recommend a depth of insulation of between 40mm and 80mm. Using 60mm woodfibre with a lambda value of around 0.045W/mk on a typical 500mm stone wall should give a U-value of around 0.45W/m²K or less. If this is continuous across all obstacles and penetrations then this is adequate. Depending on the circumstances of the retrofit this may need to be agreed with building control (who may require lower U-values) and bear in mind that most within the industry would consider this an inadequate return – on paper – for the effort and cost.
External Solid Wall Insulation (EWI)

Important to Know

- In order to achieve a continuous layer of insulation it may be necessary to undertake a lot of preparatory work, some of which may involve utilities companies which can be difficult to co-ordinate.
- It is critical that the insulation used is vapour permeable in order that moisture can safely escape from the construction to the outside.

Our Guidance vs Conventional Guidance

<table>
<thead>
<tr>
<th></th>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY</td>
<td>Various products and finishes to give an acceptable U-value</td>
<td>U-value less important than continuity of insulation. No gaps - resulting in removal / replacement of common items like downpipes / gas meters / wallhead etc. Protected dry wall reduces heat loss. Natural insulation reduces embodied energy.</td>
</tr>
<tr>
<td>HEALTH</td>
<td>-</td>
<td>Effective insulation reduces cold spots and mould risk internally & improves comfort.</td>
</tr>
<tr>
<td>FABRIC</td>
<td>-</td>
<td>Protecting wall from weather safeguards longevity. Measures noted for Energy, Health, Maintenance and Moisture will all serve to protect building fabric from long-term problems.</td>
</tr>
<tr>
<td>MODELLING</td>
<td>-</td>
<td>As Energy above – emphasis on little details in practice.</td>
</tr>
<tr>
<td>FABRIC</td>
<td>-</td>
<td>As Energy above.</td>
</tr>
<tr>
<td>MOISTURE</td>
<td>-</td>
<td>Far less risk of interstitial condensation. Vapour permeable and hygroscopic insulation helps protect construction from saturation.</td>
</tr>
<tr>
<td>PEOPLE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td>-</td>
<td>Using vapour permeable insulation and flexible, natural coatings should ensure greater consistency (movement / moisture) between substrate and new materials.</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>(Installation of EWI reduces need for maintenance of original wall)</td>
<td>Emphasis on ensuring all making good and maintenance carried out first. EWI forms a new external surface so maintenance costs reduced in future.</td>
</tr>
<tr>
<td>SIGNIFICANCE</td>
<td>Not acceptable for listed buildings, Conservation Areas, some ‘finer’ properties where agreed.</td>
<td>As conventional guidance, but greater importance attached to existing external features: either avoid EWI or additional effort / cost to faithfully replicate details.</td>
</tr>
</tbody>
</table>
Our guidance is different from conventional guidance in that we suggest taking far more trouble to achieve a continuous layer of insulation, mainly related to the level of preparatory works noted below.

Preparation

- The first thing is to undertake a review of the utilities and services entering the building. In many cases, these will enter the building underground, rising in a services cupboard for example, which is fine. The issue arises where services enter through the wall, travel along the wall on the outside or, as is often the case with gas meters, enter via a meter and box which is affixed to the wall. Since the objective is to avoid any breaks in the insulation, any items which could penetrate the insulation need to be re-routed, or in the worst case, penetrate the insulation at a single point only. The best solutions involve re-routing so that the cable or pipework enters the building underground but this may not be possible. Where services must run across the surface of the building, it is best to install them within conduits to allow for future alterations. In the case of gas meters which usually have to remain accessible and on the external face of the building, it is important to agree with the gas company to move the meter and box in advance so that it stands proud of the wall a sufficient distance to allow the insulation to run behind it. [1]

- Another early item is to survey the condition of the existing face of the building. Existing structural defects will need to be rectified [2]. In some cases, it may be that the existing render or other surface is not sound. In every location where this is the case remedial work should be undertaken to the face of the wall so that fixings made into it are securely fastened into sound and homogenous material [3]. A structural engineer's report is sometimes required following 'pull-out tests' of the masonry to ensure that the wall can support the insulation and resist it being sucked away by adverse wind conditions.

- Downpipes [4] and waste pipes running across the facade need to be moved outward, to allow the insulation to run behind them. Extended fixings are available for every type of pipe. Adjustments also have to be made at the top and bottom of pipes where they connect to the gutter above and drains below. In some cases it is possible to ‘swan-neck’ the pipework back into the existing ground connections [5] but in others, it is necessary to move the existing drain connection or create a new connection.

- Existing eaves details vary significantly. The key for effective insulation is to make sure that the insulation in the roof or ceiling is continuous with the insulation on the walls. [6] Many buildings have overhanging eaves which enable the roof insulation to cover the wall-head and it is relatively straightforward to ensure that the two insulation layers meet. In cases like this, there is often a soffit board which will need to be removed to allow access to the wall-head. [7] In older properties, the roof can be ‘tight’ to the wall meaning there is no opportunity to join the external wall insulation so if allowable and practical, the lower section of the roof needs to be extended to enable insulation to continue across the wall-head and join the external boards. The eaves board and gutter can be moved at the same time and the overall appearance remain the same. It is always important to ensure that there is a route for ventilation above the insulation whether this is in a loft or within the rafters [8].

- Typical practice for external insulation is to install the bottom or starting runner for the insulation approximately 50mm above the internal floor level. This means that heat leaks out of the base of the wall creating cold areas internally which attract condensation and mould. It is important that the insulation is extended downwards at...
This image shows a mineral wool strip between floors to resist fire between property boundaries. Note also conduit for telecom cables is notched into the back of the insulation boards.

This image shows insulation applied to the upper levels of the gable. This area is often ignored but a small section of the upper flat has been insulated here.

In this project, wood fibre EWI is being installed over a solid brick property © Natural Building Technologies

least as far as the depth of the floor. [9] In solid floored properties, it makes sense to take the insulation down to ground level, and if possible, below ground level. The insulation used should be thinner and more robust to offer some resistance to knocks. This insulation should be installed up to and tight to the bottom or starter rail normally used to set the main insulation boards and sealed with a non-setting sealant. This insulation will also need to be finished, usually with a similar render as above.

- In suspended floors the main insulation and render should extend at least as far down as the full depth of the floor joists. Ventilation to the spaces beneath the joists must be retained (and if missing, installed) [10].
- Most properties have some features externally which can complicate external wall insulation. External lights [11] and signs, satellite aerials and dishes, hanging flower baskets and other items should be removed, and replaced, secured using thermally broken fixings through a patch of suitable (robust) insulation of the same depth.
- If windows and doors are to be replaced or repaired, it is best if this is undertaken before the insulation in installed so that the insulation can be carefully fitted to and sealed against the frames. Windows should be installed close to or in line with the line of the insulation. The further back from the face of the wall, the more of a gap is created across the reveal which needs to be insulated. Ideally at least 20mm of insulation should be installed to all reveals (including the cill) although specially designed thin insulation can be used if there isn't enough room. [12] In all cases, it is worth installing airtightness tape over the join between windows and masonry to avoid air leakage at this common weak spot. [13]

Installation

- In terms of the installation of the main insulation boards themselves, there is no difference between our guidance and conventional guidance. The main thing is to follow the guidance of the manufacturer, ensuring that there are no gaps, corners around openings do not coincide with joins in boards, and that the correct beads are used. [14] On some projects, the more difficult to access areas sometimes get left, and we would advise that an independent person inspects both the extent, and quality of the installation of boards (particularly regarding gaps) before the first coats of render are applied.
- It is important that the insulation material is vapour permeable in order to allow moisture within the wall to escape. Most ‘natural’ materials tend to be breathable as are most configurations of mineral wool and expanded polystyrene. Certain plastic insulants that are described as ‘closed cell’ are likely to be impervious to moisture and these should be avoided in this situation unless there is a clear alternative strategy to remove moisture within the wall.
- The Grenfell Tower tragedy has raised concerns about the behaviour of building materials in fire. In this regard, mineral wool products have a clear advantage over plastic and most natural insulation. However, when insulation is installed tight against a masonry wall, and covered in a non-combustible render – as described here – the risk of fire spread is minimised because fire cannot easily ‘get into’ the insulation, nor once in, can it readily spread. The risk of fire spread in cases like Grenfell is linked to the adjacency of the insulation to a continuous cavity.
- Render is thereafter applied to the insulation boards and tends to be built up in two or three coats, and with a variety of finishes [15]. As with the insulation, it is important that the render is itself vapour permeable while also waterproof of course. Different thicknesses and
finishes are often applied to reveals of openings, to different areas of the building (for aesthetic reasons) and often to the base course if applied.

- Original features of the building where possible should be replaced / re-formed as far as is practical.
- Once render is completed, any items temporarily removed should be re-connected / replaced.

Alternatives

- Another technique, once the wall is prepared, is to install an insulating render directly onto the wall. This technique involves fewer operations and so is likely to be cheaper, quicker and simpler to undertake. The modest U-value improvement is not a problem, depending on the specific targets of the project and possibly compliance requirements.

Health & Safety

The most common health & safety issues centre around access (working off scaffolding) and the issues raised during disconnection and reconnection of existing externally mounted services (such as gas meters).

How Much is Enough?

Unless there is a particular U-value target to be reached, around 100mm of suitable insulation is usually sufficient. In Passivhaus-standard retrofits this will likely be thicker. What is much more important than the precise depth of the insulation is the continuity of the insulation, so, for example, it is more important to move all of the downpipes / waste pipes / gas meters / external lights than add an extra 20mm of insulation.

Timber Frame Retrofit

In Scotland most new homes are now built in timber frame. The majority of these homes feature a timber frame internally, filled with insulation, with a ventilated cavity outside that and a masonry wall beyond to make it look like a masonry home. The timber frame is the structural element however holding up the intermediate floors and the roof.

There is a lot to like about timber frame construction. Above all is is relatively fast and cheap to build compared to masonry. In a country with bad weather, this means you can get the roof on quickly and be working in the dry sooner. The masonry outer leaf can be put up any time thereafter and is largely outwith the ‘critical path’ of a build process. Timber framed homes are generally better insulated than older homes and timber is a relatively ‘green’ material compared to most masonry options, with less embodied energy.

However, there are a number of potential downsides to timber framed buildings. Timber burns of course and being organic it can also rot or become infested with insects if the conditions are right, and it can move if it’s not installed at the correct moisture content. Timber frame walls don't have the sheer mass of masonry and so have to manage acoustic separation differently.
All of these downsides are managed through the building control system, design codes and through manufacturers’ recommendations. However, the increase in complexity required by the building regulations and a widespread de-skilling of the construction industry means that while timber framed homes built in the last 50 years or so are theoretically better performing than older buildings, this is not always the case in reality. They can also be more complicated constructionally and less robust, making it harder to devise improvements which are effective in both cost and performance.

Important to Know

- It is important to remember at all times that timber is organic, so it can decay under the right circumstances. This means material choices, air and vapour barriers and ventilation all play a part in keeping the timber and insulation dry and performing well.

Our Guidance vs Conventional Guidance

<table>
<thead>
<tr>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve U-values, fill frames if empty.</td>
<td>Improve U-values, fill frames if empty. As Construction below. Importance of airtightness. Potential to upgrade existing insulation in frame (often inadequate) Lambda / U-value less important than continuity of insulation (eg to reveals). Additional insulation resolves thermal bridging of studwork. Natural insulation reduces embodied energy.</td>
</tr>
<tr>
<td>Effective insulation reduces cold spots and mould risk internally & improves comfort. Use of natural insulation reduces respiratory health risk. Use of dense insulation reduces fluctuations in temp / RH.</td>
<td>HEALTH</td>
</tr>
<tr>
<td>Measures noted in other sections will all serve to protect building fabric from long-term problems.</td>
<td>FABRIC</td>
</tr>
<tr>
<td>As Energy and Construction.</td>
<td>MODELLING</td>
</tr>
<tr>
<td>As Energy, Moisture and Construction.</td>
<td>FABRIC</td>
</tr>
<tr>
<td>Continuous installation of VCL and service void protects frame from internal moisture more effectively.</td>
<td>MOISTURE</td>
</tr>
<tr>
<td>Providing a service void protects the membrane but also offers less cost and disruption if services are to be upgraded in future - helping to ‘future-proof’ the house.</td>
<td>PEOPLE</td>
</tr>
<tr>
<td>Carry out pressure test first and audit to assess, adjust works accordingly. Allow for potential localised improvement, reflects ‘patchiness’ of some timber frame buildings.</td>
<td>CONSTRUCTION</td>
</tr>
</tbody>
</table>
There is actually very little guidance on retrofitting timber framed houses, and what there is is quite diverse, often coming from a commercial standpoint, and often assuming that there is no insulation within the frame.

As well as improving the U-value, our proposal provides two other benefits. By removing the existing plasterboard, it allows us to ‘top-up’ any slumped, failed or missing insulation within the frame itself - a common problem, especially with older timber frames. In addition, it allows us to resolve a major weakness in most timber frame walls by providing a continuous vapour control layer, no longer at risk from penetrating services.

Preparation

- Compared to a solid walled house, timber framed buildings are quite complex constructionally, with lots of layers, all of which play a different role. This complexity means that it is worth spending a little time investigating before making a decision one way or another. The most helpful test is an air pressure test because this will determine how much of the heat loss can be linked to draughts. Results can differ widely and will affect how to proceed. While undertaking the pressure test, make sure it includes an audit (usually with a smoke pencil) and thermographic images are taken so that potential problems and the overall quality of the construction can be assessed.
- If the reporting above shows that the building suffers from excessive draughts, then it makes more sense to tackle these before spending time and money on disruptive insulation improvements. Common areas are discussed in the section on airtightness. Remember when undertaking these works to ensure that ventilation is also considered.
- If the reporting shows that the building is relatively airtight but that there are localised issues within the walls or other areas, then a targeted approach may be best. It is possible to inject insulation directly into timber frames, but this doesn’t allow you to see what is happening and there are risks of materials used affecting electric cables. Therefore it is usually better to remove plasterboard, assess what is there and carefully re-insulate, repair the vapour control layer (if present), put back plasterboard and re-decorate. If this is only in one or two areas, then it is not too onerous.
- If the timber frame is uninsulated, then clearly this is the place to start. Insulating within the frame will make a huge difference but all of the following points remain useful to consider.

Installation

- Once the plasterboard is removed, it will be possible to inspect the existing insulation and services within the frame, and to upgrade, or top up any insulation which has slumped or is missing [1]. Comments on the best type of insulation and need for attention to detail (no gaps) as noted in the roof section apply here too.
• A layer of ideally interlocking insulation boards can then be affixed over the inner face of the studs. This gives both more insulation, but also overcomes the thermal bridging effect of the studs [2]. These boards should be fairly rigid to avoid the need for additional woodwork and ideally hygroscopic and denser materials (such as woodfibre) in order to better manage any moisture in the wall. As with standard Internal Wall Insulation (IWI) it is important where possible to insulate the reveals of windows and to seal all gaps and at service penetrations etc.

• The vapour control layer that is then shown inside the insulation [3] should be an 'intelligent' type which allows some vapour ‘back into’ the room under low pressure while maintaining an effective barrier to high levels of vapour pressure into the wall. This is because the external sheathing of the wall is likely to be plywood or OSB, neither of which is vapour permeable, so moisture that gets into the wall cannot escape, as it can in a ‘breathing wall’ (Refer to ‘Building Science’ section).

• Not only is it critical to have a vapour barrier to stop moisture getting into the wall, it is important not to then puncture this barrier and for this reason we have shown a service void formed of battens inside the membrane [4]. These allow for future changes of servicing and location of electric boxes etc. [5] without damaging either the insulation or the vapour barrier in the long term.

• The internal finish can then be completed with plasterboard as shown although another solution would be a clay board and directly applied plaster finishes are also possible. [6].

Alternatives

• An alternative is to remove the existing masonry wall (which is rarely structural) and add insulation to the outside of the existing timber frame. Obviously this option involves a lot of work, including the need for local authority approval for both planning and building warrant as the building will probably look different externally. The work will almost certainly affect windows and doors as well as anything connected with the external face of the building including service entry points and the eaves above. Insulation boards can be installed directly over the existing sheathing board and this reduces the thermal bridges of the studs themselves. A new breather membrane is then required.

The drawings show the most common arrangement of timber frame (left) and a proposal (right) to improve energy efficiency without affecting the outward appearance of the building.
over these boards and vertical battens to create a ventilated cavity as before.

- An alternative which would improve the long-term durability of the wall would be to replace the existing sheathing board with a ‘breathable’ board, improving the likelihood of moisture being able to safely escape. However since the sheathing board is needed for racking strength, a structural engineer would be required to advise on a suitable replacement (breathable but also strong enough) as well as making sure that boards are only removed in stages to prevent failure of the frame.

- It would be possible to rebuild the masonry wall but this would probably need new foundations and possibly a roof extension, so the most likely scenario is that a new, lightweight cladding is then used over the new cavity. This could be timber, metal or any number of board materials, the advantage of all being that – as long as the structural engineer agrees – these can all be fixed back to the existing frame and no new foundation will be required.

Health & Safety

There are risks associated with the dust of demolition and potentially from breathing in the fibrous dust of the existing insulation. If working externally at height there are associated risks and there are issues related to disconnecting and re-connecting services.

How Much is Enough?

Unless there is a particular U-value target to be reached, around 100mm of additional insulation is usually sufficient, assuming the frame already has around 150mm of insulation within. In Passivhaus-standard retrofits this might need to be thicker. What is much more important than the precise depth of the insulation is the continuity of the insulation.
4.6 Windows & Doors

The world of window replacement tends to split into two broad camps. The first and largest is the straightforward replacement of windows across council and housing association properties which are usually undertaken on a 30-year cycle. The work is considered an issue of maintenance, with sometimes a consideration of energy efficiency. Since windows nearing time for replacement tend to be wooden and have often been badly neglected, there is a common perception that timber windows perform badly and so PVCu windows are often considered for replacement.

The second camp is where the building has some historical merit or is in a conservation area. Although Historic Environment Scotland as a body has moved a long way forward in its appreciation of the issues of historical window upgrading, planning and conservation officers too often default to an inflexible view that these windows need to be kept as single-glazed, or replaced on a strictly like-for-like basis.

In this way, both camps miss out on the huge range of interest and potential that exists in this subject to improve every aspect of window design without necessarily losing any of the beauty or functionality of existing window arrangements. We have added a section in this chapter to introduce the range of issues, not always considered, which impact on our recommendation. We have divided our guidance into two possible solutions, responding to the very different routes that open up in the presence, or absence, of regulatory conservation concerns.

Important to Know

- Doors and windows usually lose heat at around 5x to 10x the rate of other areas of the house – per unit of area – and so it makes sense to look carefully at how we can improve what is often the 'weakest link' in the building envelope.
- However, heat loss is not the whole story with openings; south facing windows also bring warmth into the building during the day, east and west-facing windows to a lesser extent, and all windows lose heat at night. Heat loss is also related to draughts, not just U-values. Balancing energy flows is not straightforward.
- Moreover warmth is not the only issue with windows and doors – they also admit light, provide views and a connection to nature and the outside, allow us ventilation at times and from the outside provide the 'eyes' of the property. In Scotland where the summer days are long and winter days are short, they significantly affect the mental health of a population which spends 90% of its time indoors, so again, getting the 'best' opening is not a simple exercise.
- A number of regulations may apply to windows in retrofit projects which must be adhered to. These may include constraints imposed by conservation officers, as well as building control aspects such as those related to fire escape and security.
- In this section we refer to openings to encompass both doors and windows

Additional Issues to Consider with Openings

Energy Efficiency

- U-values tend to be used as the single factor to consider when contemplating energy efficiency. In an older solid-walled house, uninsulated with single-glazed windows, the U-values of the walls...
might be perhaps 1.1 W/m²K and 4.5 W/m²K for the windows. Typically therefore the windows and doors lose heat at around four times the rate when considering U-values alone. In an insulated house with good quality double glazing, the U-values for walls and windows might be 0.2 W/m²K and 1.4 W/m²K respectively, meaning that even though the windows are approaching the efficiency of the older uninsulated walls, they are still losing heat at now seven times the rate.

- Doors and windows lose heat through the glass, but they also lose heat through their frame, and so the material and design of the frame itself is important. Beyond this however, windows and doors can also lose heat through the gaps around them, or between them and the wall itself. For this reason, the installation of any window or door is considered important in our guidance whereas it is usually ignored in conventional guidance.
- Because of the position and movement of the sun, windows gain and lose heat differently depending on their orientation. Very broadly, in Scotland, south-facing windows can gain as much heat as they lose over the course of the year, while west and east-facing windows lose more than they gain, and north-facing windows lose far more.
- In addition, openings gain and lose heat at different times of the day, so while south-facing windows will bring in warmth during the day, they will of course lose heat overnight. Traditional and common techniques of using shutters and heavy curtains therefore work well in combination with even quite poor quality windows because they allow for gains during the day, while significantly reducing heat gain.

Diagram showing the 10 ways in which buildings can gain and lose heat through windows:

1. mainly radiant losses through the glazing, better U-values will reflect more back into the room
2. conductive losses through the frame (timber frames better than PVCu and metal, but can be improved)
3. mainly conductive losses through the surrounding construction and materials used to fill the installation gap (if any)
4. mainly radiant gains from sunshine, better U-value glazing will reflect more, preventing heat gain
5. like 3, but water running off glazing can saturate the wall beneath a window if the cill is not effective and cause greater heat loss
6. curtains (but also blinds, shutters, secondary glazing) will reduce radiant losses from the room
7. convective losses from draughts between the window and the surrounding walls – a common problem
8. convective losses from inadequately airtight windows
9. downdraughts caused by cold glazing can lead to cold air running at low level into the room – discomfort
10. downdraughts caused by inadequate seal top and bottom to curtain, or whatever is placed in front of the window at night
losses overnight. Similarly, using removable secondary glazing over the heating season, and removing it during the warmer months is a sensible option when considering energy balances across a whole year.

- What U-values don’t tell us is that a great deal of heat loss through windows is due to draughts which can increase the heat loss associated with windows far more than normally appreciated.

Comfort & Wellbeing

- In Passivhaus design, there is a stipulation that windows must have a maximum installed U-value of 0.8 W/m²K. This almost always means high performance triple-glazing. This stipulation is only partly related to energy efficiency however, it is also related to the fact that at this level of performance, even the coldest temperatures externally will not create a ‘downdraught’ on the inside. Whilst only a fraction of retrofit projects will aspire to Passivhaus levels of energy efficiency and comfort, this lack of downdraught is worth mention where particularly large windows are being replaced, or where there is a likelihood that older or more vulnerable people will be spending a lot of time near the window, for example in care homes.

- For many people, the views from their home are the primary reason for purchase and the most treasured aspect of the property. In health care design it is now well understood that views of the outside, and particularly of natural settings aids recuperation and healing. Studies have also shown higher levels of satisfaction and better performance from workers in commercial settings who have views to outside, and so it is important that this aspect is considered in any retrofit scenario. Whilst windows placed higher in the wall will throw light into the far reaches of the room, and offer views of the sky, windows which reach down to the ground, or low level offer a more immediate view of, and relationship with the external spaces adjacent, which is valued. In most retrofit projects, the location and position of windows is fixed, but in relevant cases, it is worth a pause to consider these aspects before simply accepting what is there.

- In the relatively high latitudes of Scotland, and especially in the north, the winter days are short and people spending most of their time indoors can suffer from Seasonally Affective Disorder (SAD). Providing higher levels of natural light, especially during the winter months is therefore worth consideration for the wellbeing of those using the building, especially those who don’t get out as much.

- Unlikely (and welcome) as it may seem to some, overheating is a risk in Scotland where buildings are designed to higher levels of energy efficiency and airtightness. In warm, retrofitted buildings, large, unshaded south-facing windows and lack of ventilation can lead to uncomfortably hot conditions. Whilst this can be little more than a minor inconvenience in some cases it can become serious in others, leading to inability to sleep or more serious health issues. This is a risk not taken seriously now, but it will become a larger feature of our lives as the climate changes and needs to be accounted for when retrofitting buildings. Fixed or adjustable external shading mainly to the south, and ventilation are the key tactics to avoid problems in the future.

Materials & Resources

- There is no doubt that timber windows represent a ‘greener’ option for window frames due to the simple fact that timber is renewable, while PVCu and metal are not. Timber frames tend to be better performing thermally as well.

- On the other hand, timber windows are rarely fully reused because it is not economic for anyone to remove the glass which has been putted into the timber frame and the timber itself has little value. Conversely,
PVCu and metal windows can, and often are separated because the glass is ‘dry-glazed’ (no putty) so it is easy to remove, and then both glass and plastic / metal have some scrap or recycling value. The solution to this if seeking the ‘greenest’ option is to use timber, but to ensure that the glaze is ‘dry-glazed’ so that at the very least, the glass can be readily removed and recycled.

Openings in Historically Sensitive Buildings

Our Guidance vs Conventional Guidance

Where there is regulatory conservation control, then conventional guidance is essentially conservation guidance and our guidance is similar. In this example, we presume that the existing sash and case window and frame is to be retained, repaired in places and draughtstripped, all of which is common conservation practice. Where it potentially deviates is in the use of slim replacement double-glazed panels installed into the existing panes. Further, we consider the use of secondary glazing, shutters and heavy curtains. All of these measures have been investigated carefully by HES and if carried out well will provide a U-value – with shutters / curtains etc drawn – comparable to new double glazed windows. Acoustic performance and security is of course also improved.

At all times, it is assumed that the planning department and in particular the conservation officer will have an active interest and require to agree all proposals. The following borrows heavily from the work that has been done on this subject by HES.

Preparation

- Because heat loss from doors and windows is due not just to the door or window itself, but to the gap between the component and the adjacent wall, it is well worth spending time to insulate and seal this area. The aim is to reduce air leakage and to fully fill the gaps with insulation. This insulation can also be extended into the internal reveals of the opening to counter the effects of the thinner walls in this area. Remove all of the existing linings, taking care if they are to be replaced to minimise damage. Ideally there should be some form of damp-proof course to prevent moisture in the masonry causing decay in the timber. If not present, it may be possible to add this, preferably against the masonry to prevent moisture affecting the insulation as well.

- A variety of methods can be used to effect an airtight and fully insulated space. It may be possible to apply high performance airtightness tapes across any gap, or to tightly stuff insulation or felt into any small gaps. Making sure that any insulation cannot get wet, pressing roll-type insulation fully into the gap can be done with hands or where the gap is small with a screwdriver or similar. For some reason installers often forget to insulate underneath windows, so take care to ensure all four sides are carefully sealed. Glass and mineral based wools are prone to becoming brittle and failing over time, so we recommend sheepswool which fares better in the long-term.

- The reveals around doors and windows vary widely, but in most cases, it may be possible to install additional insulation across the width of the reveal before replacing or adding finishes. Doing so is beneficial because it tackles the relatively poor thermal performance of the reveal itself.
Installation

• A number of companies specialise in this field and techniques will vary, but broadly, the first step will be to remove the casements, leaving the frame in place. Existing single-glazing is removed from the panes and the surrounding timber cleaned down and routed out if necessary to accept the slightly thicker double-glazed panels. The glazing may be puttied back in or held in place in some other way, additional grooves may be routed to install draughtproofing strips, repairs to rotten areas made and the timberwork may be re-painted.

• The frame itself should then be reviewed and refurbished. This may mean repairs to cills or other areas, checking and replacement if necessary of weights or counter-balances and in some cases the addition of removable facings and hinges to facilitate internal cleaning of the lower sash. Once the casements are replaced, the whole window needs to be working smoothly with no draughts, restrictor stays if necessary and handles / locks and so on. Ideally the frame is re-decorated as well and all mastic seals externally refurbished.

• In this example we have included secondary glazing. Secondary glazing comes in many variants. Some involve glass panels, some perspex or polycarbonate options which tend to be cheaper, lighter and less of an issue in relation to breakage. They can be rigid or flexible and installed within a separate frame or onto adhesive or magnetic strips. In addition, they can be installed on the face of the existing window or, depending on the configuration of facings, within the frame. We would recommend a system which is easy to remove and store so that it can be removed for cleaning and to allow for seasonal deployment since it won't be needed in summer. Where it is possible to also use shutters, it is worth using a system which sits within the original window frame in order to allow the shutters to work.

• One disadvantage of secondary glazing is that many systems prevent the original window being accessed for ventilation, but some systems provide sliding or hinged casements which allow for continued use of the openable window when required.

• Where possible, it is always beneficial to use, or bring back to use the original shutters. The significance is that shutters, prepared carefully, can significantly improve the performance of the window at night thereby making a substantial contribution to energy efficiency as well as bringing acoustic and security benefits.

• The benefits of shutters can be maximised by ensuring that they form a complete seal (against air leakage) when closed. This can mean creating rebates with small seals where they join and ensuring that they close tightly against a facing. In addition, the central timber panels can be replaced in some circumstances by highly insulating panels and finished to match the original.

• Finally, curtains can be adjusted to retain heat at night. This is done bearing in mind the two objectives which are to seal against air movement, and to reduce radiant heat loss. Adding thick or insulating layers (such as bubble wrap) between the curtain finish and lining reduces radiant heat loss, while ensuring that the curtain physically touches the ground and sides of the opening ensures that cold air cannot get in and warm air out. Small, linear weights can be used to ensure the curtain rests on the ground and Velcro can be used to ensure that hidden within the folds of the curtain, the sides are physically attached to the adjacent wall. Where windows are directly above radiators, the internal window cill should be extended so that curtains rest on it, allowing the warm air from the radiator to freely enter the room. It is important that radiators are not smothered by long curtains for energy efficiency as well as fire safety reasons.
Alternatives

- the above example describes four separate improvements to the original window and of course any combination of these will effect an improvement. Some properties may not have original windows to upgrade, nor shutters to refurbish, while those procuring larger scale social housing retrofits may not have the budget to undertake more than one of the improvements noted above.
- A number of blinds options are available on the market, some of which aim to offer a degree of thermal performance. These can be considered as alternatives to, or in addition to other measures such as curtains.

Health & Safety

While the majority of windows can be replaced from inside, there is usually a requirement to provide a weather-sealing finish between the frame and the adjacent wall which necessitates external working at height, so all relevant risks then apply. Most windows and doors feature the use of glass which carries its own set of health and safety risks and many double and triple glazed windows, and some older but larger windows and doors can be very heavy to handle and care must always be taken when lifting and transporting heavy items.

Openings in Non-Sensitive Buildings

Our Guidance vs Conventional Guidance

The conventional motivation with doors, windows and retrofit is usually maintenance, although in some cases, energy efficiency will be relevant, for example where Energy Efficiency Standard for Social Housing (EESSH) compliance is being sought. Where this is the case it is likely to be a case of aiming for better U-values of the replacement windows in combination with any identified acoustic, regulatory or security aspirations. Replacing windows is an expensive way to improve SAP and RdSAP ratings and there are usually more cost effective ways to do this.

Assuming that windows are to be replaced, we look more closely at maintenance, aim for better energy efficiency in reality, along with engagement with occupants, as well as addressing wider sustainability and comfort issues. A number of planning and building warrant aspects may be pertinent and compliance with relevant regulation should be sought even when not technically required.

Preparation

- The comments made under the section above on historically sensitive windows remain relevant here and should be referenced. The difference is that since the new window is to be inserted into a ‘blank’ opening (there is no retained frame), it makes sense to install damp-proofing and should be easier to install the necessary airtightness and insulation around the frame.

Window / Door specification

- Where windows are to be replaced, then the capacity to save energy, the fact that windows tend to be the ‘weakest link’ in terms of heat loss and the relatively little uplift in cost, make high performance triple
glazing the most sensible choice.

- Triple-glazing also brings benefits to acoustic performance (especially adjacent to busy roads or ‘noisy neighbour’ developments), and some security benefits.
- Because of the clear environmental benefits of specifying timber, the concerns over environmental issues linked to PVCu and the poor thermal performance of metal frames, we would propose that the window frames be made of timber, ideally from local manufacturers.
- Acknowledging the need to consider maintenance in the long-term, we would propose that the windows are painted with an opaque white (or pale coloured) paint if a painted timber finish is required, or a metal cladding system if preferred.
- Where a painted timber window is chosen, we would suggest that the base of all glazed elements be fitted with removable metal cills, along with any upward facing elements such as the main cill. This means that those parts of the window most prone to weathering damage are protected with long-lasting and replaceable components, pushing the overall lifespan of the window well beyond the conventional 30-year cycle.
- Items that are prone to breakage or wear and tear should be able to be repaired or replaced separately from the main window, such as handles, locking mechanisms, hinges, stays and so on. This aspect is rarely discussed and should form part of the specification decision, allowing repair and maintenance to be carried out without needing full-scale replacement of the window itself.
- Whether or not the windows come with trickle vents will depend on the ventilation strategy of the project. In any event, it is important that windows in every room can be opened to provide fresh air if needed and to help avoid overheating in warm weather.

Installation

- The main issue with installation is the care and attention devoted to the area surrounding the window as noted under ‘preparation’ in the previous section. This is important because new and high performance windows are expensive but their efficacy is compromised – and money wasted – if they are not installed in an airtight and well insulated manner as described.
- A further item which improves the thermal performance of the installed window, and also reduces the risk of condensation and mould on the frame, is the practice of installing insulation – either internally or externally – partly across the face of the window frame itself. Obviously it mustn’t come so far that it prevents the operation of the opening casements, but some overlap is desirable. This is because, even with the best timber windows frames, the frame itself loses more heat than the glazed areas, and so additional insulation is welcome. The precise detail will depend on the surrounding construction and the exact window frame section.

Alternatives

- It may not be possible to replace all windows, or to replace them with high performance triple-glazing. Depending on other factors, such as condition of existing windows and aesthetics, one option might be to replace those windows which face north with higher performance windows, because these are the ones which only lose heat (no solar gain facing north) and so on balance will offer a better return on the investment and provide greater comfort improvement.
- Regardless of the quality of the windows installed, shutters which are
drawn at night will always improve performance and should always be brought into use if possible. Most people use curtains at night and the comments made in the previous section still apply, as do the comments made about insulating blinds.

Health & Safety

The comments made in the previous section apply, but it is worth noting again that triple-glazing can be much heavier, and contractors should be given due warning to ensure safe handling of all components.
4.7 **Ground Floors**

Floors often get overlooked when it comes to retrofit. This is partly because of a general perception that if heat goes up, then there's less need to consider the floor, partly because it is often difficult (or impossible) to access the space beneath, and partly because of the level of disruption if you factor in the moving of all bathroom furniture and kitchen units and, in some cases, the need to decant occupants.

However, the potential for saving energy and improving comfort by insulating ground floors is much greater than most people appreciate. In many homes across Scotland, there is little more than timber boarding and a carpet between your warm living spaces and the cold, winter air beyond. Unless your single-glazed windows are extremely draughty, then the floor is almost certainly the ‘weakest link’ in the thermal envelope of your building.

Another important factor is draughts. Suspended timber floors are normally relatively ‘leaky’ elements in a building (hence the popularity of wall-to-wall carpets in the UK) providing the source of a lot of the cold air flowing into the building. Making floors airtight, even if you don’t add insulation, will make a useful contribution to reducing heat loss. This is less the case with solid floors, although the wall connections are also a source of air leakage.

Another reason floors are more important than people imagine is because that’s what our feet touch. Certain parts of the human body are more sensitive to heat gain and loss and cold feet affect our discomfort disproportionately, so making your floor warm will bring more benefit to the occupants of the building than is described simply by energy efficiency.

Like loft insulation, there needn't be too much cost involved in making a large difference to thermal performance and also little risk to the building fabric or (usually) to conservation significance.

Suspended Floors

With suspended floors, the big issue is whether or not you can insulate from beneath. Insulating from beneath is usually a lot easier (if there's room) and means you do not have to disrupt the room above or lift floorboards etc. However, the benefits of insulating from below start to evaporate as the space available gets tighter. If the depth of solum is less than around 600mm, then it might be easier to install from above.

Important to Know

- It is critical that adequate ventilation is retained beneath, or if not present created within and across the solum. This ensures that joists are kept dry and free from risk of decay or infestation.
- As with lofts, the aim is to get a layer of insulation without gaps, with air gaps sealed across and around the edges of the floor, and all services carefully managed.
Our Guidance vs Conventional Guidance

Probably the biggest difference between our guidance and conventional guidance is the importance we place on floors. After lofts, it is without doubt the next most important area to insulate for energy efficiency. This is not necessarily because the savings will be the next largest, but because the effort, cost and risks are relatively low in comparison with wall insulation, for example.

Conventional guidance for suspended floors usually shows a net material to hold the insulation in place between joists, whereas we show an airtight, vapour-permeable membrane which will prevent cold air ‘washing’ heat from the open surface of the insulation. We also

<table>
<thead>
<tr>
<th>Category</th>
<th>Conventional Guidance</th>
<th>Our Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY</td>
<td>Insulate between joists, rigid board give better U-values, or roll type over netting.</td>
<td>Emphasise importance of floors generally. Insulate between joists, supplement above or below if necessary. No gaps. Use soft or 'semi-rigid' rolls to fit snugly. Natural insulation reduces embodied energy. Emphasis on air leakage will improve performance considerably, especially around the edges. Use of membrane (or boards) will reduce thermal bypass. Consider hatch.</td>
</tr>
<tr>
<td>HEALTH</td>
<td></td>
<td>Warm floors provide greater comfort. Effective insulation reduces mould risk internally & improves comfort. Use of natural insulation reduces respiratory health risk (mainly when installing).</td>
</tr>
<tr>
<td>FABRIC</td>
<td></td>
<td>Measures noted for Energy, Health, Maintenance and Moisture will all serve to protect building fabric from long-term problems.</td>
</tr>
<tr>
<td>MODELLING</td>
<td></td>
<td>As Energy above – emphasis on airtightness and details generally.</td>
</tr>
<tr>
<td>FABRIC</td>
<td></td>
<td>As Energy above.</td>
</tr>
<tr>
<td>MOISTURE</td>
<td>Ensure solum ventilation.</td>
<td>Solum ventilation removes moisture safely. Hygroscopic insulation helps protect timber.</td>
</tr>
<tr>
<td>PEOPLE</td>
<td></td>
<td>Invest in upgrading services etc. before installing insulation (less cost and disruption later). Guidance on Health & Safety issues in relation to installation.</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td></td>
<td>Soft insulation works better between timbers. Hygroscopic material helps protect timber from moisture problems.</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td></td>
<td>Review / upgrade existing joists and services before starting.</td>
</tr>
<tr>
<td>SIGNIFICANCE</td>
<td></td>
<td>Unlikely to be relevant, but important to protect listed, or otherwise significant floor finishes.</td>
</tr>
</tbody>
</table>

Common practice is to contain insulation within netting. However, this allows cold air moving in the solum to draw heat from the insulation – "wind-washing" – and so our proposal replaces this netting with an airtight and vapour permeable membrane.
emphasise the importance of sealing this membrane to the surrounding walls, and this is to reduce the air leakage into the heated spaces above.

We also propose a soft or semi-rigid insulation to ensure it forms a snug fit, because this is likely to be more effective than using a ‘higher performance’ (lower lambda) rigid insulant with even small gaps around, and as elsewhere we propose natural and hygroscopic materials which better protect the surrounding timber from moisture.

Insulating from Below

Preparation

- Ensure that the access hatch is safely and easily used, and if necessary, enlarge and / or create other hatches. Larger / extra hatches provide more light, convenience and importantly safety. If you are insulating your own home, then Health & Safety legislation won’t apply, but for contractors working on larger projects, guidance relating to ‘working in small or confined spaces’ is relevant, and the principles of making sure that working conditions are safe, and providing escape in the event of a fire, for example, are reasonably applied everywhere.
- Working beneath the floor can be uncomfortable and inconvenient, so it pays to prepare carefully, making sure all tools required are on hand and that there is sufficient light to work. Battery powered head torches work well with temporary rigged background lighting.
- When insulating between joists in a floor, you are technically increasing the risk of decay because you are keeping them warm and reducing the air flow around them. For this reason it is important to use hygroscopic materials, but also to ensure that the air flow within and across the solum is adequate. As part of the work, ensure that the existing air bricks are not covered or damaged, and that there is an adequate flow of air to all spaces [1]. This means both air flow from outside, but also across the solum, so that air bricks / gaps across internal partition foundations are also important. Installing additional air bricks and forming gaps for air to pass through within the solum are jobs that should be undertaken by suitably qualified contractors.
- The guidance related to water pipes, electric and telecom cables in lofts applies equally to solum spaces. Ideally, it is worth reviewing all cables and pipework and removing anything redundant while adjusting anything that would compromise the insulation works.
- All water pipes are ideally removed from the solum but this is not always practical. It is important to fully insulate any water pipes [2] (including central heating pipework), as the temperatures in winter within the solum once insulated will be much colder and the risk of freezing increases. Doing so will save energy while improving the ability of the system to heat the building as intended.
- Conversely, the risk for electric cables is that they overheat once insulation is applied. If they are run within the depth of joists then they should be run within conduit to allow some air flow around them, and to allow for upgrading in the future [3]. It is also possible to run cables beneath the joists and insulation. However this can be annoying as work continues because they get in the way and then need to be fixed back once insulation is completed. Telecom cables do not suffer from overheating but should be treated in the same manner.
- It is worth checking the condition of the joists, particularly as they meet the walls. It is quite common for joist ends to require replacement due to decay or infestation and it is wise to allow for this possibility.
Installation

- The installation of the insulation itself is relatively straightforward, it is simply cut to fit neatly and pushed into place [4]. Using a semi-rigid insulation such as woodfibre is much easier than a soft roll type because they will tend to support themselves in place but the main thing with both types is that they fully fit, leaving no gaps between themselves, the joists and the adjacent walls. Even the smallest gap must be filled and the insulation should fill the full depth of the joists. Sometimes joists run close to a wall and the gaps between get left out, but these must be carefully filled [5].
- The next step is to install the membrane [6]. Many companies provide ‘breather membranes’ which allow vapour to pass through and these are a step up from netting, but there are also membranes which are also airtight, available from specialist sources, the phrase often used is “wind-tight” and these are preferable.
- The membrane is stretched neatly and tightly across the whole floor and carefully sealed at all laps and, importantly, around all edges where it meets the adjacent wall.
- In order to effectively seal laps, it helps if the laps can be organised to line up with the joists [7]. This allows you to firmly seal using double sided tape as well as the recommended tape over.
- The membrane is typically stapled to the underside of the joists but this is not always a robust long-term solution as the insulation can drop onto the membrane pulling it away from the joists. Ideally therefore, it is best to run a small batten over the membrane at perhaps 1.2m centres or every two or three joists, or over each lap of the membrane, with the batten screwed through the membrane into the joists.
- Sealing the membrane against the adjacent walls is arguably the
trickiest bit because walls are generally of masonry, often irregular and usually dusty. If the walls are quite straight and smooth, one solution is to carefully dust down the walls and apply a primer which then allows the membrane to be confidently taped and sealed to the wall. More often, the surface is too irregular, so an alternative is to wrap the membrane around a batten which is mechanically fixed into the wall using a couple of beads of mastic to seal the irregular gap between the two [8].

- As with the loft, the hatch can become a weak link if not carefully treated. A snug fitting ‘box’ needs to be created to mimic the insulation levels elsewhere and ideally, a trim formed for the hatch to drop onto, and seal against air leakage. Here, the simplest solution is often to use rigid insulation cut neatly to shape and fixed to the underside of the floor finish, rather than soft insulation within a framework.

Alternatives

- An alternative is to substitute a vapour permeable board for the membrane. This could be more robust but also potentially more expensive.
- It is also possible to add insulation both above and below the joists. This can be done instead of, or in addition to insulating between the joists. If it is possible to insulate between the joists then this is usually the best solution because it has no knock-on effect on levels, and is a robust solution in the long-term if undertaken well. The main advantage of adding or insulating above or below is that doing so avoids the thermal bridging associated with the joists themselves.
- If adding insulation beneath the joists, then it is critical that the insulation is vapour permeable, and the most sensible type to use is a rigid board which can be simply affixed to the underside of the joists and held in place with battens that are also fixed back to the underside of the joists.
- Adding insulation above the joists is discussed in the next section.

Health & Safety

Some solums are in fact basements or semi-external spaces where access is straightforward and working practices are essentially normal. As depth beneath joists decreases however, the issue of access and safety becomes more acute and it is important to know the depth of solum (which can vary across the space to be insulated) before carrying out the work, and agreeing a sensible methodology for managing this. Critical issues are escape, general working conditions, air quality and lighting. Most solum spaces are dusty. Almost any work in them will generate dust in the atmosphere which is both a risk to health and makes working more difficult. Clearing debris will raise dust, as will brushing down walls to affix membrane, and any work will need to address this aspect.

How Much is Enough?

For most projects, filling the depth of the joists will be adequate to save energy and bring benefits to comfort. Most joists in older buildings are between 125mm and 200mm when they were installed – and filling these will provide a reasonable level of insulation. Better than increasing the depth of insulation is to follow the guidance on preventing air leakage to the letter as this will have benefits beyond the discussion of U-values.
Insulating from Above

Preparation

- Depending on the space, fixings like kitchen units and bathroom fittings will need to be removed along with all furniture and floor finishes.
- The floorboards will need to be removed. This is usually difficult to do without damaging the boards, so if the boards are to be reused, some care is required. In any event, all boards should have any nails removed to protect those handling them from that point onwards even if they are to be disposed of.
- It is possible to leave skirting boards in place, but removing skirting boards allows for easy access along the edges to form the airtight seal, and also makes it easier to form a space for re-located cables [1].
- As above, it is important to check both the ventilation beneath the floor and the condition of the joists, particularly as they meet the walls. It is quite common for joist ends to require replacement due to decay or infestation and it is always worth allowing for this possibility.
- The guidance related to water pipes and cables is the same as above but in some cases more difficult to achieve [2].

Installation

- Once boards are removed and services dealt with, it is possible to start the insulation works.
- The same vapour permeable and airtight membrane discussed in the section above should be draped across the joists to hold the insulation
Because of the importance of sealing the laps between membrane rolls, it is preferable to run the membrane roll in the same direction as the joists, so that the whole length of two or three joist runs is covered in one go, and then the lap can be made over the top of a joist, firmly sealed using double-sided tape. It is important that the membrane is taught between the joists and tight against the joists to avoid the ‘sagging’ effect which pulls the insulation away from the joist. To this end, a small batten is affixed to the lower edge of each joist both sides to ensure the insulation fills the whole space.

- The membrane also has to be sealed against the wall and this can be tricky. Along both sides where the joist ends meet the wall, one solution is to affix a batten (eg 50x50mm) to the underside of the joists and within 10mm of the wall. This allows the membrane to be fixed firmly to a solid background at every edge and the small resultant gap filled with a non-setting mastic, or tightly stuffed with insulation material to effect a complete air seal.

- The space is then fully filled with insulation. The insulation should be hygroscopic, but can be a soft roll or a loose-fill material as it does not need to hold itself up, the important thing is to ensure that it fully and neatly fills the space without any gaps.

- Thereafter, the original floorboards, or an alternative board can be affixed back over the joists. If the floor finish is likely to be a single layer of timber floor boards, then it is advisable to install a vapour control layer beneath these boards, to minimise the air and vapour entering the floor from within the room. If a deck is to be installed such as OSB sheeting with other finishes to go over, then a VCL is probably not required as long as the OSB is taped at the joints and to the wall.

- If services remain beneath the floor which might require access in the future, it may be worth creating an access hatch close by, and the comments regarding this hatch from the section above apply.

- If the existing floorboards are replaced or a similar finish is installed, then there is no issue with floor levels, existing skirting boards and doors can be left as they are. However, it is sometimes decided to raise the floor levels to accommodate a service void or underfloor heating, or simply to add more insulation above the joist level. Adding insulation is discussed in the following section on solid floors but the principles remain the same.

Alternatives

- A common, but more expensive alternative to the above, is to form a cavity into which to place insulation by inserting first a board across the lower sections of the joists resting on battens. This gives a more robust ‘base’ for the installation generally, but requires quite a bit more work to cut the boards neatly. If supporting battens are placed on the lower sides of joists then you lose some of the potential depth of joist for insulation, but it is possible in some cases to run the battens beneath the joists. This detail does not provide full airtightness so all connection between boards and joists, on all four sides should be taped.

Health & Safety

Working from above is much easier than below, but there are risks associated with joists toppling if not adequately braced and this should be checked once the floorboards are removed. Joist ends should also be checked where they meet the walls to ensure they are sound and free from decay and infestation. It is important to always operate from a
safe working platform and the best solution is to remove only part of the floorboards at one time, placing temporary boards over the working area until that is completed. Unless also forming improved ventilation beneath, there shouldn't be any reason to disturb the solum so dust raising needn't be a problem.

How Much is Enough?

The comments for insulating from beneath remain true relevant, but it may be necessary to factor in the possibility of adding more insulation, or floor finishes or underfloor heating above the joists.

Solid Floors

Beyond cost, there are two main issues when insulating solid floors. The first is headroom. Adding insulation and another floor finish will usually raise the level of the floor and in many properties, there isn't much room to do this, or at least, it is not welcome. This puts pressure on to find thinner solutions while still providing a reasonable level of insulation, and there are solutions which are extremely thin, but they tend to be more expensive to buy. The second issue is disruption to internal doors and skirting boards, thresholds and other elements which interact with the floor. In order to be effective, the insulation and new floor should be continuous which means adjusting or removing and refitting a potentially large number of items.

Important to Know

- The importance of ground floors is discussed at the beginning of this section, and although solid floors tend not to suffer from the level of air leakage of suspended floors, they are still a priority for improvement, even if their importance is not widely appreciated.
- Even a small amount of insulation is much better than none.
- The issue of breathability is not as important in this situation so our guidance is very much like conventional guidance – improve the U-value as much as practical and affordable.

Our Guidance vs Conventional Guidance

The main difference of this guide is that we believe insulating ground floors is much more important than commonly considered because of both the energy efficiency and comfort benefits it can bring. In terms of the detail of our proposals, the only difference is the emphasis we place on airtightness measures. This is because there are no significant issues related to moisture, and also because of the pressure to keep insulation thin, while also providing as good a U-value as possible, we recommend the same sorts of products and materials as others. For this reason, we haven't produced a table of differences as elsewhere.

An exception is where the existing floor finish is of exceptional quality or conservation significance in which case it should be left in situ, repaired if necessary and maintained. Depending on location, the issue is that this may become the coldest surface onto which moisture can condense so this needs to be managed, either through maintaining lower temperatures or higher levels of ventilation. In many Victorian homes, for example, there is a mosaic covered entrance hall which may happily be left as it is.
The key in this case is to treat the inner door, rather than the outer door as the thermal envelope.

Preparation

- Depending on the thickness of the final floor makeup, doors may need to be re-cut to allow them to swing freely over the new finish, while it may also be necessary to raise all of the skirting boards. Alternatively, the skirting may remain in place and the new floor finish simply come up against it with an additional, usually very small skirting bead used to cover the gap. Because of the value of sealing the gap between the insulation and the wall, we recommend that the skirting is raised and replaced but this obviously means greater work, disruption and cost. An alternative if possible is to cut the lower section of the skirting and slip the new floor finish beneath.
- It is tempting to avoid extending any new insulation and floor finish beneath fixed items like kitchen units, and baths. However, this then risks these areas becoming the coldest surface, and warm, moist air can then condense there, raising the risk of mould. In some cases, it is possible to use adjacent kitchen units to temporarily support unit carcasses, adjust the ‘feet’ upwards and extend the insulation and floor finish to the wall before re-adjusting the ‘feet’ back down to the new floor finish. It is usually possible to insulate beneath a bath if the side panel is removed whereas a floor mounted WC and wash basin will need to be disconnected by a plumber and re-connected afterwards.

Installation

- The material with the lowest lambda value currently is a vacuum insulated panel (VIP) but these are both expensive and vulnerable so are rarely used. Aerogel products have a lambda value almost half of the next nearest high performing insulation but are correspondingly expensive and the plastic boards such as PIR, PUR and Phenolic foam boards probably represent the best option in most cases, unless issues of head height and thickness are critical.
- If the solid floor is level, smooth and clean, then it is possible to continue directly over it. However, if not, a number of levelling compounds may be used to provide both a level and suitable surface.
- Some insulation materials come in simple boards which then need to be laid neatly and without gaps. Some come with lapped or tongue and groove edges which are to be preferred. All junctions with the wall and each other should be taped to keep in place while working and reduce air movement between any gaps that could open up.
- Depending on materials chosen, it is advisable to install a vapour control layer which also acts as an air barrier and ‘slip layer’ above the insulation, but this is something that would be advised by the manufacturer or supplier of either the insulation or the finish above.
- Some insulation products come already bonded to a top floor deck which allows them to be laid in one go. Depending on what is to go over this, it is important to seal all joins between panels and to the wall.
- The final floor finish can then be installed along with all of the fixings / skirtings / doors and so on replaced in-situ.
Alternatives

- In many properties, there is a solid floor with battens fixed to it and then a timber floor or similar laid over. In these situations, it may be possible to remove the battens and install continuous insulation with ‘floating’ boards over without raising the level of the floor. Alternatively it is possible to leave the existing battens or install new ones and infill the gaps between with a suitable insulation. The significant disadvantage of this solution is that the battens themselves present a thermal bridge, losing more heat and raising the risk of cold surfaces. For this reason, the continuously insulated floor described above is preferable. Some people will prefer a traditionally nailed timber floor and so a compromise solution is also possible where some insulation is laid first (or affixed to the underside of the battens) and then the timber floor fixed to the battens as before.

Health & Safety

There are few Health and Safety concerns with this sort of work in the normal course of events. There may be dust associated with working on old concrete screed or removing older floor finishes, and removing old skirting boards can result in nails protruding from the back which should be dealt with immediately.

How Much is Enough?

Unless there is a particular U-value target then it is simply a case of more insulation / better lambda values and better airtightness will lead to improved performance. In most cases there is usually either a practical and / or cost limit to what can be achieved. It is worth bearing in mind that the first millimetre of insulation is the most effective, the second slightly less so etc., so even a small amount of insulation is much better than none. Even 10mm of Aerogel or 20mm of a PIR / PUR / PF product is normally sufficient to make a difference and provide better levels of comfort.
4.8 Heating Approach

One of the most important questions facing anyone contemplating a renovation project is what heating system to use, if the existing system is to be changed. This is almost impossible to answer because circumstances vary so greatly. The situation is complicated by the fact that a great deal of information is available, not all of which is helpful, and a heating system usually has to provide heat not just for the house, but for water, and sometimes for cooking as well.

There is no way a chapter in a publication like this could cover all eventualities on this subject, so we have tried instead to consider the many issues which can impact on the decision, so that the reader can work through the list below, better understand the relevant aspects and hopefully narrow down the options. We start with more strategic items first, but some will be more pertinent in some situations.

Space Heating

Reduce Demand for Heating (Need Less)

All of the issues in the following section discuss ways in which the amount of heat needed from the outset is reduced, making the task of providing heat less onerous and costly.

- Insulation and Airtightness
In the battle to save energy, reduce carbon emissions, increase comfort and reduce fuel costs, there is no doubt that insulating a building effectively is the number one priority. This guide shows how this effort can be improved in order to benefit from savings in reality and not just on paper. The number two priority is airtightness because if this is not managed the heat will simply bypass the insulation through all the inevitable gaps. When considering a typical uninsulated property, carrying out the insulation measures described in the guide should result in savings of at least 50%, and if carried out thoroughly, perhaps even 90%. If heating a building is a problem that needs to be solved then reducing this problem to 10% of its original size will result in a much smaller problem to solve – both in initial and long-term costs – with more options for possible solutions.

- Keep it Cooler
Average living room temperatures are now three degrees warmer than in the 1970s as people find it cheaper to keep homes warm. Whilst this is largely welcome, it raises a question about potentially unnecessary carbon emissions. Historic Environment Scotland has published an excellent document (TP14 ‘Keeping Warm in a Cooler House’) which discusses ways in which people can remain comfortable in lower temperatures. It is important to emphasise that this does not mean ‘putting up with’ colder temperatures. The authors of the publication demonstrate how it is possible to be comfortable in a generally cooler home (around 16 degrees) if supplementary heating is used when required and appropriate clothing is worn.

The study arose from a concern that people are trying to ‘force’ older buildings to maintain contemporary ideas of comfort for which the buildings were not designed and that this mismatch between traditional properties and modern ideas of comfort was causing not just high fuel bills but wider problems for buildings and their occupants. Ultimately, the
study shows that for most, the increasingly high temperatures we expect in our homes are not necessarily healthy. In the drive towards sustainable solutions, the potential to reduce energy consumption whilst maintaining comfort is too large to ignore.

The underlying logic is that, ultimately, we are not trying to keep homes warm, we are trying to keep people warm, and there are more creative ways of achieving this than heating a whole house. In practice this might mean that, in most cases, central heating systems can be turned down while supplementary heating (see below) is used when necessary.

- Supplementary Heating

Many people living in cold homes will be familiar with supplementary heating; their main heating system does not provide sufficient warmth and they are forced to use small gas or electric heaters to provide supplementary warmth and make things tolerable. Unfortunately, these ad-hoc solutions are often more expensive to use and in the case of gas heaters, can create other problems with air quality and humidity. Generally these heaters tend to heat a single room but at least they are responsive and can be turned off easily when not required. The principle is that these heaters are not the main system, they are used whenever needed and they only heat a small area to keep costs down.

The above situation is the unhappy cousin of the far more positive option discussed in the previous section and championed by Historic Environment Scotland. In this scenario, we consider that the house can be maintained at a reasonable temperature, but that this temperature is lower than normal, acknowledging that not all areas need to be kept warm to the same degree.

Recognising that people in the house need to be kept a little warmer than this, especially when resting, or when not moving (for example, seated at a desk) supplementary heating is used to provide warmth close to and focussed on the person. The most obvious example is the humble hot water bottle, but a number of other examples exist. Heated foot pads can be used to keep feet warm when sitting, small radiant panels can be used under desks to keep legs warm, heated seats can keep backs and bottoms warm and other solutions exist which operate locally to provide warmth and comfort. Beyond heated car seats and hot water bottles, the concept is not widely known in the UK, more examples exist in Europe and the US, but the potential to save energy and improve comfort is significant.

- Zoning

It is possible to reduce energy consumption and the need for heating by considering the patterns and types of use in each room of the house, and then allowing for different spaces to be heated differently. For example, in some houses, guest bedrooms are rarely if ever used and could be kept at a much lower temperature than regularly used spaces. Another example is any room where people are generally standing or busy, such as a kitchen or workroom, and so the need for heat is less. Many people keep their bedrooms cooler than other rooms and this makes sense because the majority of time is spent beneath sheets or a duvet. Conversely, living rooms and bathrooms tend to be kept warmer.

The practical implication of this is that the heating system choice should, if possible, allow for different parts of the home to be heated differently. This can be done by fitting every radiator with a thermostatic radiator valve (TRV), or by fitting the house with two or more different ‘zones’ which can be controlled differently. This is readily done with more automated central heating systems, but can also be achieved in a more
basic sense by heating the living room of a house with a wood stove, for example, making that the warmest room, while leaving doors open or closed as necessary to allow heat into other rooms as required.

- **Timers and Programmers**
 Most people are familiar with timers and programmers for central heating systems. It is the ‘when’ corollary of the ‘where’ of zoning noted above in which the heating system is set to come on only at times to suit the occupants. Typically, heating systems are set to come on for an hour or two in the morning just before and during the breakfast rush before everyone exits for work and school, coming on again for longer in the evening before switching off around the time people go to bed. Programmers allow the system to be set over different days to reflect weekday / weekend patterns. The building regulations require that all new buildings are fitted with timers and programmers and in any given retrofit situation, it is important to ensure that, where possible, the heating system is able to be as closely controlled as possible.

- **Thermal Sensitivity of the Human Body 1:**
 Cool Heads and Warm Feet
 Most people know intuitively that they feel better when their heads are cool and their feet warm. While a relatively mundane observation, this is in fact an important strategic goal for heating systems. It can allow designers to ensure comfortable condition using less energy, by working with the human body's inbuilt preferences. Human bodies have adapted over millennia such that different parts of the body – mainly the head, hands and feet – respond more readily to temperature, meaning that working closely with these can increase the effectiveness, and thus efficiency – of any given heating system. Same level of comfort – less energy.

 The goal is to try and create a situation in which feet are warm while heads are relatively cool. This does not serve as a rigid rule, but it does mean that underfloor heating, for example, is far preferable to ceiling-mounted heating which creates more or less the opposite effect. Less obviously, it also means that systems that mostly heat air (which then rises towards the ceiling) are less effective because they are largely providing heat to the wrong part of the room. They have to work harder, using more energy so that the warmer air builds up against the ceiling and down towards the floor, and this disadvantage is amplified where ceilings are high, which is often the case in older buildings.

- **Thermal Sensitivity of the Human Body 2:**
 A Preference for Radiant Heating
 Throughout human evolution, we have evolved with the sun and ever since the first human tamed fire, we have also benefitted from this source of warmth. Both the sun and fire provide largely radiant heat and humans have evolved to respond well to this. Importantly, radiant sources of warmth can keep us warm even if the air is cold. This is because, very broadly, we gain or lose about half of our warmth through radiant heat transfer, and only about a quarter each from convection and conduction. The point of this is that if we use radiant heat, we can use less energy to effect the same levels of comfort.

 Although it is easy to visualise warmth from the sun and fire, a less obvious aspect of radiant comfort is that humans gain and lose heat all the time, not just from these two heat sources, but to and from all of our surrounding surfaces. If you stand in an empty room, your body surface is gaining and losing warmth in relation to the floor, ceiling and walls of the room. Given that we are largely vertical in form, most of this heat transfer happens between us and the walls. If the walls are warmer than us, we

Thermostatic radiator valves, or TRVs, allow each radiator to be individually controlled meaning different rooms can be kept at different temperatures to suit different requirements.

“If you don't like the skirting heaters, why don't you just say so.”

Low level heating provides greater comfort, for most people.

© The Estate of Norman Thelwell
will feel warm even if the air is cool, and if they are colder, we will feel cold, even if the air is warm.

Typically this radiant heat transfer is rather uninteresting; houses are warmed by radiators which heat the air, but they and the warm air also heat the surfaces which are then fairly warm too. Everything in the house — air, walls and the people inside — are all reasonably warm and so the exchange of warmth between things is minimal. However, we are interested in optimising heating systems so that we can use less energy while still keeping comfortable, and so what is interesting is when we start to manipulate things. By designing buildings explicitly with ‘warm surfaces’ we can use less energy whilst maintaining or even improving comfort. Ideally these warm surfaces are in the floor (underfloor heating) but an equally effective solution is ‘warm walls’. Another method which exploits the benefits of radiant heating is the use of ‘radiant panels’ which are separate usually metal or ceramic panels heated usually with electricity.

Free / Incidental Sources of Heat

The ideas above can all be employed to reduce the overall amount of heat required to maintain comfortable levels. This section describes two sources of ‘free’ heat the first of which can be employed to reduce the burden on the heating system, while the second needs to be acknowledged and controlled where possible.

- Sunshine

Vast amounts of free solar energy radiate onto the surface of the planet and it makes sense to capture as much of this as possible, especially in a relatively cool country like Scotland. In a well designed, low energy retrofit project, solar gain might account for as much as a third of the heat input of the building.

The flow of warmth in and out of windows is a complex subject and it is discussed in Section 4.6. In most retrofit projects, changing window configuration is not considered, but if major alterations are planned, then it is worth considering the optimum layout of windows in the property before making any decisions about a heating system. However, the most important aspect of windows and heat is to make sure that options are available to add insulation at nights. This can take many forms and these are discussed in the section on windows, but from the perspective of a housing association, for example, ensuring that tenants have effective curtains, and are educated / motivated to use these regularly is potentially as important – and certainly cheaper – than upgrading windows wholesale.

- Internal Heat Gains

‘Internal heat gains’ is the term used to describe any ‘incidental’ heat not specifically designed to deliver warmth. It includes heat given off by a fridge, TV and other electrical equipment, heat from uninsulated hot water pipes and tanks, as well as the warmth emitted by people themselves. In the past these gains were given little thought, but as houses have become better insulated, their contribution to heat gain has become more noticeable.

In cold weather the heat given off is arguably a benefit, but in warm weather, it can become a nuisance leading to overheating because it cannot necessarily be switched off and in the case of uninsulated hot water pipes leading from solar panels, the heat is only generated when it is sunny, and therefore least needed. While fridges, large TVs, and other
electronic equipment can give off quite a bit of heat, when compared to the same amount of heat provided by an efficient heating system, it is an expensive, and rather wasteful source of warmth.

For this reason it is worth trying to minimise incidental heat gains by specifying efficient appliances and making sure hot water pipes are insulated – leaving the ‘proper’ heating system to provide the bulk of the heating. However, some level of heat gain is unavoidable and the key thing is to acknowledge this and, to an extent, plan for it.

Characteristics of the Building and Occupants

The items discussed above all serve to reduce the demand for heating in any building and should therefore be considered in every project before opting for a heating system of any type. In many retrofit projects, the heating won't be changed, but where it is possible, before opting for a heating system, it is important to consider the context within which the system operates.

- **Occupancy / Lifestyle**
 For those organising their own renovation, it is possible to consider their own specific requirements. For those who spend a large amount of their time in the house (for example, elderly couples) keeping the house warm most of the time is important, while for those who are rarely in, a quick-response system is more effective. In large households, the capacity to provide hot water might be a prime concern, while for those few households who have access to a woodland and want to burn their own timber, for example, the particular requirements of timber storage, drying and wood stove will be uppermost in mind. The point is that specific occupancy requirements might determine how effective (and therefore ‘sustainable’) a chosen heating system would prove to be.

For housing associations and council housing departments, it is not possible to identify specific occupancy patterns and the key is to have systems installed which are flexible and able to respond to very different demand requirements.

- **Type of Property**
 The type of home can make a significant difference to the viability of a heating system. A well-insulated, airtight home will reduce the demand on any system of course, but in such a house, any thermal mass will also be able to play a useful role (see below) doubling up on the potential benefits of older masonry buildings. By contrast, poorly insulated and draughty buildings will make more demands on any system, but also won’t be able to benefit from any thermal mass inside because the heat will be lost before it has a chance to be stored.

House type is particularly relevant to heat pumps. Heat pumps work best when asked to do as little as possible. Installing them in poorly insulated and draughty houses with conventional radiators means they are being asked to deliver water at the higher temperatures required by radiators, and these radiators are losing that heat quickly. Heat pumps installed in these situations are unlikely to reach the levels of efficiency quoted. Conversely in a well-insulated and airtight home, with underfloor heating delivering heat at lower temperatures without great losses, heat pumps are more likely to be as effective as claimed.

Another consideration is ceiling heights. Buildings with high ceilings will benefit most from radiant heating because heating systems which produce largely warm air (such as conventional radiators) will heat air
which then sits high above the people in the room. Underfloor heating works well in these situations because the heat is located nearer the people and being largely radiant and lower temperature is less susceptible to rising.

- **Thermal Mass**

Thermal mass is at heart a very simple principle, it is the ability all materials have to absorb and store heat energy. Generally, denser materials can store more heat and designed as part of a system, these materials can be deployed to reduce excess warmth (by absorbing and thus ‘removing’ the heat from the space), store this heat and desorb, or give off this heat again when the surroundings cool down. Being able to manage fluctuation in temperatures like this is potentially valuable and thermal mass can be used to work interactively with solar gain as well as with conventional heating systems.

Although thermal mass is a simple principle, optimising its contribution to efficient heating systems is much more complicated in practice. The first reason is because it is not really houses we are trying to keep warm, but the people within them. Keeping a house warm over long periods when there is no-one within is a waste of energy, and so perhaps the first thing to consider in combination with thermal mass is occupancy. Simply put, the more people are going to be in building, then the more valuable thermal mass may be. In housing for the elderly or infirm, it may well be a very good idea, but in starter homes for young couples who work and are out most weekends, it may make less sense.

Another aspect is that thermal mass works better where heat is largely radiant (like direct sunlight) but less well where the heat is convective, i.e., contained in the surrounding air. Since most houses in the UK are heated with radiators which are unfortunately misnamed and provide about 70% of their heat convectively, thermal mass isn’t as helpful as might be imagined. Linked to this issue is the fact that thermal mass declines in usefulness as air movement increases. Thus in draughty houses, it doesn’t get a chance to warm up before the heat is whisked away by draughts, while in some energy efficient and airtight projects, there is so little heat loss that any thermal mass has little to contribute. This is not to say that thermal mass doesn’t have a role to play – most Passivhaus practitioners want to include thermal mass to help with summer overheating, but as a principle it is worth remembering that the more air movement, the less useful thermal mass can be.

It is obvious that to work thermal mass needs to be available, that is, ‘open’ to the warmth, usually in the air or radiant energy. For this reason, the thermal mass of older masonry walls are of little value if they are covered with a cavity and plasterboard, or lath and plaster. In addition, thermal mass is best used as close to the warmth as possible. For example, people often refer to the concrete of a floor slab as being useful thermal mass, while the majority of the warmth in the air is in the upper areas of the room, next to the ceiling. In these cases, thermal mass in the form of dense ceiling boards would be far more effective. Summer sun shining directly onto a solid floor will clearly be absorbed by materials such as tiling and concrete, but winter sunshine is better stored by walls which receive the low-angled winter light more directly.

There are many other aspects to adequately discuss thermal mass. One is the use of phase-change materials which are able to store much greater amounts of heat energy and thus able to be used in thinner layers. Another is the use of ‘hygroscopic’ materials which absorb both heat and moisture. Clay plasters are a good example of such materials and
by being able to store both are able to work more effectively not just for thermal comfort but for air quality as well.

The subject of thermal mass is particularly relevant in retrofit because most older houses are made of masonry and so have large areas of potentially suitable thermal mass to use. However, this mass will not be much good if it is covered by internal wall insulation or some other lining, nor will it work if the house is draughty, and in situations with low occupancy, it may not be helpful. Conversely, externally insulated masonry walls, in homes that are relatively airtight and with high occupancy may well be able to help reduce energy consumption and improve comfort.

Overall Characteristics of Heating Systems

The following section describes the strategic characteristics of any heating system. Not all are relevant in every case, but all have the capacity to affect overall efficiency, leading to a smaller ultimate heating load.

- **Fuel Types and Carbon Intensity**
 Different fuels contain different levels of ‘primary energy’ which reflect the actual amount of damage done to the planet relative to the energy delivered to the household. The subject is so complex that trying to provide a definitive guide to which is ‘best’ is almost meaningless because of the numbers of caveats that apply. However, it is worth having a very basic sense of the basic ‘greenness’ of various fuels, as long as it is clearly established that this is only a rough guide. The list below shows the most common fuels and their relative contribution to climate change, from worst at the top, to best at the bottom, based on the UK.

<table>
<thead>
<tr>
<th>Worst:</th>
<th>Electricity (from the main grid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Fuels:</td>
<td>Coal</td>
</tr>
<tr>
<td></td>
<td>Oils</td>
</tr>
<tr>
<td></td>
<td>Portable Gases</td>
</tr>
<tr>
<td></td>
<td>Mains gas</td>
</tr>
<tr>
<td>Best:</td>
<td>Electricity (if locally renewably sourced, or in the future, or possibly using a heat pump)</td>
</tr>
</tbody>
</table>

Arguably the least controversial of the items on the list are the fossil fuels. There is little debate as to the relative climate change contribution of coal, oil and gas and no-one would suggest that they are as ‘green’ as any renewable material. Perhaps surprisingly, more controversial is the position of timber and other renewable biofuels. There is no doubt that timber, other biomass types and locally sourced methane are not fossil fuels. Whilst burning them creates carbon emissions, it is obvious that they are renewable and as such can be replanted. However, this replanting does not necessarily take place, so we are left simply with carbon emissions. This subject is discussed more in the section below on burning wood.

More controversial again is the position of electricity as the worst fuel. Perhaps the most compelling argument for not using electricity for heating is that it takes a lot of energy to generate heat and there are many sources which can be used, of which electricity is usually the most expensive. Conversely it takes relatively little energy to create light and to power televisions, iPads and such like – but only electricity can do this.
Electricity is ‘high grade’, the argument goes, and should be restricted to lighting, computers and other electronics, leaving heat to be produced by the other, ‘low grade’ fuels available.

About 25 years ago electricity in the UK was made by a mix of roughly a third coal, a third gas and a third nuclear energy. It was then run through the national grid at an efficiency of around 30%, meaning that every kilowatt used in your home represented at least 3 kilowatts ‘burnt’ at source using fossil fuel and nuclear. However, the picture is less clear today as the grid is slowly becoming ‘de-carbonised’. The main thrust of this shift has been the ‘dash for gas’ which has seen coal burning reduce drastically to be replaced with gas. More recently still, renewables have provided an increasing share of the electricity and although this contribution fluctuates considerably, there are times when the carbon intensity of the grid is low and mains electricity actually represents quite a ‘green’ option. As things stand, this picture is set to improve in the future, making electricity increasingly benign.

Some projects benefit from locally available renewable electricity, perhaps in the form of photovoltaic panels or a community wind turbine. In these cases of course electricity represents an unambiguously ‘green’ option, although the comments on using electricity for heating still apply.

Ultimately, fossil fuel resources are finite, and whilst they may never be completely exhausted, as supplies are used up they will become harder and harder to extract. Whilst the likelihood and timing of this is hotly debated, no-one seriously believes that we can continue to use fossil fuels indefinitely. Another common argument used is that long before they do run out, we will have caused irreparable damage to the planet. Either way, there is compelling reason to find alternative ways to provide energy and once our demands are reduced through more energy efficient buildings, it does look as if electricity is going to be the future for most people in the UK.

- Combined Heat and Power (CHP)
In older power stations, electricity is produced involving steam generation, from which a by-product is heat. This heat is not needed, so it is dissipated through large cooling towers which are a feature of the countryside across the UK. CHP works on the principle that when producing this electricity, it makes more sense to use the heat generated, rather than waste it. CHP plants are essentially mini power stations which generate both electricity and heat by capturing the heat that would otherwise be lost. CHP plants work well at larger scales and whilst they do not necessarily generate heat more effectively or in a particularly sustainable fashion, they are worthy of mention in this guide simply because they are an efficient way of also generating electricity.

CHP works best where there is a constant ‘base load’ meaning a relatively stable load required at all times. This is commonly associated with buildings like swimming pools (keeping water warm) and hospitals (constant need for hot water). Typically, houses do not fit this profile since they tend to need much more heat in winter and little in summer, while needing peaks of heat to warm water for showers and baths. However, where large scale housing is being built or retrofitted in combination with another, more suitable building, then economies of scale can make CHP worthwhile.

- District Heating
District heating has not really taken off in the UK but in Denmark around 50% of all heat delivered to homes is via district heating and the proportion is higher in Russia and some other European countries. The
advantage of district heating is one of scale; one large boiler can provide heat for many properties more efficiently than many small individual boilers. The main issue is then balancing this efficiency against the losses incurred piping hot water around the buildings. For this reason district heating works better when a large complex or many buildings are clustered close together to minimise distribution losses. Whilst this will make little sense therefore to someone wishing to refurbish their remote island cottage, it may well be worth consideration for housing associations looking to upgrade the heating on a block of tenement flats.

In district heating systems, there is usually a separate boiler house, hot water is then piped within highly insulated pipework to each home where the hot water is passed through a heat exchange unit. The boilers may use any fuel type so like CHP, whilst the fuel may not be particularly 'sustainable' the benefit is increased efficiency.

- Instantaneous vs Stored Heat
Broadly speaking there are two ways of strategically setting up your space and water heating system. One way is to have a boiler which is powerful enough to provide heat for everything in the house whenever required. The problem with this system – an instantaneous system – is that the peak demands made on the boiler might be very high, and so you have to install a large, powerful, and therefore relatively expensive boiler which is hardly ever used to full capacity. This can mean it works less efficiently and is a bit of a waste.

The solution to this problem is to choose a smaller boiler which works regularly to keep a tank of water hot, so that when needed, the hot water is there and the boiler doesn't have to overdo things to keep up. The tank works as a buffer between the peak demands of a household and the boiler working regularly and efficiently, particularly important for some wood fuel boilers and heat pumps. There are however a few problems with storing hot water. The first is that the tank takes up space, the second is that even when well insulated (which often isn't the case), the tank and hot water pipes tend to lose heat over time, so again heat is wasted.

Both strategies therefore have their benefits and drawbacks. A young couple in a small and well insulated flat may have little need for lots of hot water and little room to fit a tank, so might opt for an instantaneous system. A few years later, in a larger house with three children there may be a need for lots of hot water, often in peaks, and so a stored system might be more sensible. Broadly, the larger the demand, and the more likely there are to be peaks of demand, then the more efficient it is likely to be to store heat.

In practice, the decision as to which way to go is often taken for some other reason. For example, if you plan to use renewable energy to provide heat energy, then this input will come in quite randomly and will need to be stored, so a tank will be required anyway. Conversely, the use of waste water heat recovery can reduce the capacity needed to provide heat and make the use of instantaneous systems more feasible.

- Controls
Otherwise excellent heating systems are often let down by poorly considered controls. Zoning and programmers for systems have been discussed above, but there are lots of other, often mundane problems which undermine the effectiveness of a system. Since the controls are both the 'brains' of the system but also the place where the system interacts with people in the house, it makes sense to ensure these are both optimised, useful and easy to understand and use. A helpful
document called ‘Controls for End Users’ is available from the Building Controls Industry Association (BCIA) which discusses this interface and the need to make controls intuitive and clear.

An common problem for heating systems is that the controls are too complicated for many people to understand. BPE investigations often find the occupants do not understand the controls of their systems, switching the entire system on or off regularly rather than programming for that to happen automatically, leaving it on and just opening windows when it gets warm, or supplementing with other heaters when the main system has been turned down in a particular room. Needless to say, it is important as part of any retrofit programs that will alter the heating to ensure that people living in the house will fully understand both the system and its controls.

Common Heating Systems

Although there are hundreds of variations, it is possible to group the three main types of heating systems according to fuel type. Heat can be added and recovered through the ventilation system and this is discussed briefly in the ventilation section.

- **Mains Gas**
 The majority of households in the UK – about 85% – are connected to the gas grid. Mains gas is the ‘best’ of the commonly used fossil fuels, piping it directly into peoples’ homes makes it extremely convenient and it is relatively cheap. The technologies which have grown up around it, mainly gas boilers and central heating systems are pretty efficient and controllable and so if we don’t factor in long term environmental questions, mains gas is probably the ‘best’ fuel available.

 The problem however is that we really do need to factor in the long term environmental consequences of burning fossil fuels and there are places in Europe where gas boilers are now being removed because they are starting to be seen as something of a long-term liability. It is possible that within the service life of boilers installed now, that they will be removed due to incoming environmental legislation, and some large scale organisations in Scotland are now looking to replace mains gas boilers as part of their rolling programme of upgrading and maintenance. An alternative is that more benign fuels and systems will be ‘plugged in’ to the existing infrastructures.

 For those who wish to retain or upgrade their mains gas system, the best way to increase efficiency is to carry out the relevant improvements noted above and throughout this document. Newer boilers are undoubtably more efficient (and probably safer) than older models, but there are conflicting issues of waste and resource use so whilst generic energy efficiency advice is always to upgrade an old boiler, it isn’t quite so clear cut.

 The most common arrangement is to have a boiler with radiators forming a central heating system, but the boiler can supply many types of heating appliance including underfloor heating, low level heaters such as skirting radiators and domestic hot water of course. The boiler can be instantaneous or send hot water to a tank which then feeds the heating systems and hot water demands, and there are various forms of controls.

- **Electricity**
 Although only about 15% of households in the UK live without mains gas, this percentage more than doubles in rural areas and these are
also the areas where fuel poverty is often higher due to a higher ratio of poorly insulated older houses. These households have broadly two options: use electricity for heating which tends to be expensive, or use solid or container-based liquid fuels which are also relatively expensive. It is a double whammy which hits many households hard. On the plus side, electricity is ‘clean’ and doesn't need to be stored on site. For those choosing electric heating, there are broadly five options for heating.

The most common form of all-electric heating is storage heating. Storage heaters were developed to use electricity at times when it suited the national grid to ‘even out’ the consumption of electricity generally. Tariffs were introduced to make electricity cheaper overnight (mainly) and these heaters are tied to these times and tariffs, charging up with heat overnight and giving that heat off over the following day. Storage heating makes an essentially expensive fuel relatively affordable, but they are inflexible and most people find them unsatisfactory, tending to make the house warm in the mornings but too cold in the evenings, which is when people spend most of their leisure time in the home. There are more efficient and controllable storage heaters on the market now which are undoubtedly an improvement. In a very well-insulated home, storage heating can be used to provide a relatively cost-effective heating system but you still have to find a way of heating water and overall it remains a fairly expensive and inflexible system.

There are many electric heaters which are not tied to any particular tariff and can be switched on at any time, and controlled with a variety of timers and thermostats. Some heat a liquid within and operate partly as radiant heaters, while others are entirely or mostly convective, often including a fan to increase the flow of air over the heating coils. All of these heaters are flexible but as they will often use peak time electricity, they represent a very expensive form of heating. In almost every case, these heaters should only be seen as supplementary heating.

There are boilers which use electricity only. These can be used in exactly the same way as gas boilers, providing hot water both for radiators and for hot water purposes. They are most efficiently installed in combination with a storage tank and set-up to use off-peak tariffs. Capital costs tend to be lower than heat pumps.

A relative newcomer to electric heating in the UK is the heat pump. Effectively a fridge in reverse, heat pumps take low level heat from somewhere – usually the surrounding air, ground or water course – and ‘upgrade’ it for the purposes of the household heating, leaving the heat source colder. Circumstances will dictate which heat source is best but if all other things are equal, ground source and water source systems tend to be more efficient. Heat pumps are expensive to install but can be very efficient if installed correctly and if only required to produce relatively low temperature outputs. For this reason the context is key as discussed in the section on ‘Type of Property’ above.

The last option for electric heating is infrared radiant (IR) heating. IR heating is rare in the UK but more common on the continent. Radiant panels can also be created using hot water but IR panels are electric and emit heat at just beyond the visible light wavelength associated with the colour red, hence the name. ‘Far’ infrared is to be preferred over ‘near’ infrared. Radiant panels have a number of advantages; they only use radiant heat, tending to heat the surrounding surfaces of the room and anything / anyone inside, rather than the air. By avoiding heating air, they avoid convection currents (which tend to cool people even if they are warm), they avoid heating and scalding dust (which can exacerbate respiratory problems), and they are not subject to the inevitable heat
losses associated with ventilation and draughts. Heat is stored in the fabric of the building, surfaces are warmer meaning less likelihood of condensation and mould, and as discussed above, humans are more responsive to radiant heating so less energy need be expended to achieve the same levels of comfort. The disadvantages are that radiant panels tend to be a little more expensive than radiators or conventional convector panels and they don’t work well if they are shielded by furniture, so they must be positioned in such a way as to be able to ‘see’ as much as possible.

- Burning Wood and other Solid & Liquid Fuels
In areas not serviced by the mains gas network, many households still rely on oil and various forms of portable gas. Although the costs are higher than mains gas and storage issues come into play, the infrastructure of the heating system in the house is very much the same as for mains gas. There is normally a boiler and radiators and all of the comments are relevant to these fuels equally.

A very small number of homes still use varieties of coal or peat for space heating. A smaller number still have back boilers fitted to stoves or fireplaces which allow for heating hot water as well. The high carbon emissions associated with coal, the inefficiency of these systems compared to more modern arrangements and the air quality problems created mean it really makes sense to replace these.

Timber is renewable and although burning it causes carbon dioxide and other emissions, it can be re-planted and so it is universally considered a ‘greener’ option than fossil fuels and most other options. However, this is only the case if the timber really is re-planted and this is very hard to establish in most cases, making the case for timber less compelling. Another aspect which has recently become pertinent is that of carbon sequestration. What the logic of carbon sequestration amounts to is the idea that burning timber – even if it is less damaging than fossil fuels – is still contributing to climate change, whereas using it to build buildings is actually removing carbon from the natural carbon cycle and helping in the fight against climate change, so it represents a better option.

Notwithstanding the arguments noted above, many households burn wood either as part of, or all of their heating system. In addition to traditional log stoves, timber can now be bought in chipped and pellet form. Chips and pellets are associated with more automated forms of boiler but automated log boilers are also available and such boilers can also be used on larger projects, providing heat to groups of houses with little need for human intervention.

Wood stoves can operate as stand-alone room heaters or can be linked into a back-boiler and radiators along with a water tank and hot water heating. Wood burning purists note that adding a back-boiler cools the chamber, reducing the efficacy of the burn and increasing the risk of deposits in the flue, but load units (also known as heat chargers) can help to overcome this. Modern stoves tend to be far more efficient, using a variety of techniques to burn hotter, keep the window clean and generally improve the experience and performance of wood burning. In relatively airtight homes with open-plan spaces, extract fans can create a negative pressure which could potentially draw toxic combustion gases from the stove into the room. Therefore it is important to ensure that the stove is linked to a separate, external combustion air supply, remaining sealed to the room when operational. All wood burning can cause particulate emissions, especially when combustion is not efficient.

Carbon Sequestration
Climate change is largely driven by an accumulation of carbon dioxide and other gases in the atmosphere. There are many tactics to try and reduce the amount of carbon dioxide emissions, and others which look at trying to remove carbon from the system by ‘locking it away’ safely so it cannot contribute to climate change.

Consider a balanced forest environment: young trees are growing, absorbing carbon from the atmosphere, while other trees have grown old and died and are now decaying, releasing carbon back to the atmosphere as they do. Rather than allowing timber to rot in its natural state, we can harvest that timber and ‘lock away’ that carbon in buildings that hopefully last for many years, preventing the release of that carbon back into the atmosphere. In this way, using timber in buildings is actively working against climate change and is therefore a valuable tactic we can use in retrofit projects, whereas burning it, and letting it decay naturally, both contribute to climate change.

In this rural home, the householder goes to some length to source waste wood and timber from areas to be re-planted. His wood stove provides heat for the home and hot water, supplemented by solar thermal panels, making for a genuinely sustainable arrangement.
Water Heating

In the average home, space heating accounts for around 60% of the total energy while water heating accounts for around 20%. The rest being made up of appliances, lighting and cooking. However, as space heating demands have reduced, the proportion of energy used for water heating has increased. In Passivhaus projects, water heating is often the largest energy demand but in any event, it makes sense to consider options to reduce costs and emissions associated with water heating when undertaking a retrofit. Hot water solutions are often linked to wider space heating systems, and sometimes even cooking, and so not all solutions described here will be feasible in some situations.

- Use Less
Depending on how extensive the renovation of a property, the simplest way to reduce hot water consumption and associated energy is to keep the pipe runs between boiler, storage tank (if there is one) and taps as short as possible. This is because a good deal of heat is lost via what are called ‘standing losses’ or ‘distribution losses’ of water, which has been heated, then sits in a pipe after it has been drawn from the boiler. The longer the pipework, the greater these losses. Short distances between boiler / tank and taps also mean you don’t have to wait long for the warm water to appear.

It’s also important to ensure that all pipework is carefully insulated across its whole length. This is rarely done but it leads to considerable wastage, and additional costs and emissions as a result. It can also contribute to overheating in summer. Pipework should be carefully checked as part of the normal review process. Insulation used should be ‘closed cell’ meaning that it is vapour impermeable and carefully sealed at all junctions. Lastly, it may be worth insulating cold water pipes too, because where these pass through areas of warm, humid air (eg. bathrooms) their cold surfaces can attract condensation which can lead to moisture problems when hidden. The same is true of toilet cisterns and in the most conscientious low energy projects, these are carefully insulated.

Showering generally uses less hot water than having a bath although this depends a little on the duration of shower and flow rates. Another common solution is to reduce the flow of warm water – to use less of it to the same effect. Aerated shower heads and aerated taps for bathroom basins can be used to reduce the volume of water used, whilst still providing the ‘feel’ of a decent flow.

- Heat Recovery
The simplest way to recover heat from a bath is to leave the water in after you’ve finished. The heat dissipates into the house, but so does the moisture, and the bath can be more effort to clean. There are also now a number of companies who provide heat recovery models for showers. The principle in all of them is that the incoming water is piped in such a way that it recovers heat from the warm water draining away. It then needs less ‘top-up’ from the heating system. Most systems on the market can reduce the heat needed by around 40% and in some cases by almost half. This is about the same as a traditional solar thermal system but doesn’t involve any moving parts, the need for a water storage tank or panels on the roof.

- Solar Thermal Systems
Solar thermal systems make use of the free energy of the sun and can provide around 40-50% of the hot water needs of most households. They require to be linked to a water tank, and the solar panels and all pipework must be insulated. They also involve pumps and the controls of
the system need to be properly commissioned to make sure the various sensors and interfaces are all working as intended.

Cooking

The most common cookers are either gas fired or electric. While electric ovens are commonplace, many people prefer to cook on a gas fired hob, the typical explanation being that they prefer the controllability provided by a gas hob. However, induction hobs are now widely available and these have the same levels of controllability as gas. In addition they tend to use less energy than both gas and older type electric hobs.

Although gas cooking will continue to be preferred by many, gas cooking is one of the well known sources of indoor air pollution. All of these issues can be more serious for children and the elderly as well as those with asthma, COPD or other respiratory issues. Replacing gas hobs will remove the risk, but if retained, make sure they are properly maintained and that there is adequate extract ventilation, ideally directly above the hob.

Once used in almost all houses, range units are no longer common but where they are used in most cases they will provide cooking, hot water and space heating to the whole property. A variety of fuel sources can be used. Although it can be efficient in some ways to use one item to provide all heating, the most obvious problem is that the unit needs to be fired during the summer for cooking or when hot water is needed, but as these units inevitably heat the room in which they are placed, this can lead to overheating and wasted heat. Many people grew up with, and are particularly fond of range units and whilst they have become more efficient recently, they are unlikely to represent an efficient option in most cases, unless they can be switched off in warmer months and both cooking and hot water produced by other means.
4.9 Ventilation

Ventilation is probably the subject most overlooked in the construction industry and in wider contemporary UK society, while at the same time it has probably never been more important.

Conventional retrofit projects tend to be focussed on insulation and energy efficiency. Ventilation is not considered because it is not an energy efficiency measure, but the omission of this aspect is leading to significant ‘unintended consequences’. Whilst a small number of designers, installers and manufacturers take ventilation very seriously, there is no doubt that the majority of mechanical ventilation installations are poorly considered, poorly installed using barely adequate equipment and then poorly maintained. Because they are often noisy, many are switched off altogether. As a result, a significant majority of homes suffer from poor air quality with, in some cases, serious implications for occupants and the long-term durability of the building itself.

In this guide, we have dedicated more space to explaining the importance of ventilation and then to practically addressing the various circumstances that might be encountered on most retrofit projects.

The Need for Ventilation

Everyone knows that humans need fresh air. Beyond this fundamental understanding few people give the subject very much thought. As a result it tends to be passed over when considering buildings, environmental performance and the myriad issues which drive retrofit practice. Once again however, the practice of building performance evaluation has highlighted not only how important ventilation is, but also how intricately related it is to all manner of problems within the industry and practice of retrofit. Solve ventilation, and you solve, or at least alleviate many other problems in so doing.

The 2006 Approved Document F (Building Regulation in England and Wales) contained a very useful graph that no longer features but showed clearly why ventilation is needed and the relative importance of the various pollutants noted. For most people it is no surprise that the biggest reason we need to ventilate is to remove moisture, but it is a surprise that following close behind is the need to remove volatile organic
compounds (VOCs) and other gaseous pollutants emitted from the many synthetic and treated elements of a modern house. At roughly half the significance is the need to control body odour and nitrous oxides from cooking and combustion. By far the far smallest reason – but important! – is the need to replenish the oxygen we've transformed into carbon dioxide by breathing. There are other recognised benefits of ventilation, not least cooling in warm weather and distributing warmth throughout a home, but these aspects tend to be considered as secondary to the primary role of extracting pollutants.

Moisture is generated in homes by a variety of sources like showers, kettles and drying clothes, but it is little appreciated that one of the largest sources of moisture is us – when we breathe out, we breathe out 400 ml (about 3/4 pint) of moisture a day. One of the important implications of this is the need for adequate ventilation in bedrooms, because, where two people sleep in a main bedroom for eight hours, a good deal of moisture is generated and, being asleep, there are no opportunities for occupants to intervene manually to provide additional ventilation, like opening a window.

Another aspect of interest is the scale of the need to remove VOCs and other unwelcome gaseous pollutants which come from so many parts of a modern home. Most people honestly do not believe that the issue of toxicity and ‘outgassing’ of unwelcome gases is a serious issue. Hopefully the graph goes some way to persuading readers that it is important, and explains the importance we place in this guide on natural and ‘healthy’ products and processes which emit fewer or no VOCs.

The graph is also helpful in reassuring those who believe that building airtight homes will somehow lead to a reduction in oxygen levels for breathing! A house is yet to be built that is so airtight and so poorly ventilated that it will lead to life-threatening oxygen levels. Far more important is the fact that very many properties have been built or retrofitted which are sufficiently airtight and poorly ventilated that humidity, air quality linked to VOCs, body odour and NOx (cooking) have become serious problems.

A second diagram (above) relates to office buildings but provides a couple more insights into ventilation which are worth mentioning, particularly because of the increase in mechanical, and often ducted ventilation systems in housing.

The diagram is based on work by Danish building services engineer and researcher Ole Fanger and features the unit known as the “Olf”. Coincidentally similar to Ole Fanger’s name the word derives from “Olfactory” and describes an amount of air which needs to be removed.
by the ventilation system in order to maintain adequate air quality. One ‘Olf’ represents the pollution provided by one person and is an amalgam of moisture generated, body odour, and carbon dioxide. The significance for the ventilation industry is that in any given room, 1 ‘Olf’ needs to be removed for each person in the space. The diagram is based on a typical office in Copenhagen and shows 17 people in a room, for which therefore 17 ‘Olf’s will need to be removed by the ventilation system.

However, that is not all the system has to cope with. If everyone in the room smokes, the system capacity has to be tripled to maintain adequate air quality (the work was done in 1970s and ‘80s when this was more common) while it additionally has to increase capacity again, by almost the same amount, just to cope with the off-gassing of synthetic materials and furniture in the building, along with cleaning products etc. Once again, this shows that while most people do not realise the importance of off-gassing of materials, it is a recognised and serious issue and the reason we place such emphasis on natural and non-toxic materials in this guide. Finally, the punch line is that the ventilation system itself is the source of the largest amount of pollution, due to the fact that the intake ducting is rarely, if ever cleaned and becomes very dirty, harbouring an array of pollutants. It must be emphasised that these ventilation systems were air conditioning systems where the air was heated, cooled, humidified and de-humidified so it is not directly comparable to the simple air ducting of most domestic properties, but the lessons to be learnt are obvious.

Whilst the example is of an office, not a house, and the ventilation is air conditioning, it is hopefully obvious that the risks to health in homes is similar; people are quite at liberty to smoke in their own homes, all modern buildings contain an equivalent spread of synthetic materials and finishes that off-gas in just the same way, while ducted air systems are becoming more common and maintenance of these is unlikely to be any better. Once again, this shows the importance of maintenance and its complex relationship with energy efficiency and health.

A further lesson that can be learnt from this diagram is that if we remove smoking from the equation, use only non-toxic and natural materials and finishes, and either avoid ducted air systems or ensure that they are well cleaned and maintained, then the potential to reduce the need for ventilation – and the associated costs and energy losses – is enormous.

The Inadequacy of Most Modern Ventilation Systems

All ventilation systems in buildings have three components in common, whether designed or not:
1. some form of extract system which removes stale air
2. some form of intake which allows fresh air into the building to replenish that lost
3. and some arrangement of transfer of air between these points.

A number of recent studies in Scotland and the UK at large have shown that too often the real performance of the various ventilation strategies employed is inadequate in comparison to the requirements of the Technical Standards. The reasons for the poor performance of ventilation systems are complex, interrelated and often quite nuanced, but some of the main issues are noted below, relating to the three main components.

Extract Routes / Equipment are often inadequate:
• passive stack ductwork does not exert the requisite draw
• other natural stack or cross-ventilation routes are compromised by
This infographic shows some of the early findings of the ‘Hab-Lab’ project, perhaps the most significant of which was the widespread inadequacy of most existing ventilation systems.

Some extract fans are too small to work well and can be too noisy leading many not to be used, or switched off completely.

Extract fans placed near trickle vents will short circuit, meaning the rest of the room, and other rooms, can be under-ventilated.

Inlets are often inadequate:
- located too close to extract routes so creating short circuits which leave other areas under-ventilated
- located in wet rooms thereby creating a short circuit and other rooms under-ventilated
- inlets are left closed (occupants either don’t know about them, or have left them closed deliberately)
- inlets are under-sized
- inlets are partially or fully blocked by dirt, and debris.

Finally, anticipated transfer routes often become blocked:
- partition doors are kept closed, do not have the requisite undercut, or are blocked by carpets
- transfer grilles are blocked, sometimes intentionally, e.g. where related to contradictory fire regulations
- inlets are compromised by too many adjacent obstacles, such as net curtains, full curtains, blinds etc.

In some properties, the high levels of air leakage can mean that fans tend to draw incoming air from the gaps in the house rather than the designated inlets meaning the system doesn’t work as intended.

Ventilation systems that would ordinarily function correctly can also be overloaded by occupant behaviour such as overcrowding of rooms (particularly bedrooms), drying of washing indoors, venting tumble driers.
into a room rather than outside and what might be called ‘excessive’ or at least unanticipated use of showers, baths, kettles, cooking and so on.

Many of the above ‘real-life’ issues have been encountered on investigations and can lead to situations where levels of ventilation within a property are far from expected. Sometimes, this is deliberate – many people close off the various ventilation inlets when it is cold in order to keep the home warmer – while at other times it is unintended. Either way, while properties may well be warmer as a result, all of the moisture and pollutants that were supposed to be exhausted, build-up inside the home.

The most obvious problems occur when moisture or humidity levels increase beyond the point at which the air can contain them. At this point water condenses out of the air, usually at the coldest nearby surface leading to condensation, and if circumstances are right, to mould. While problems with mould are unwelcome, they also tend to be easily seen and therefore more readily dealt with. Equally unwelcome is the build-up of chemicals off-gassed from the plethora of synthetic furniture and fittings in most modern homes. The problem here is that the build-up of these chemicals is not easily sensed by occupants, they cannot be seen and while people often open windows to cool down, research shows that they are less likely to open windows to reduce ‘stuffiness’. The harmful effects can go unnoticed and the effects can act upon occupants cumulatively for years.

It is very important that ventilation is considered an integral part of any retrofit project, even if it is simply a case of checking the existing system to ensure that it is operating effectively. In the next section we provide our practical recommendations for what to do in two retrofit scenarios.

Existing Extract Fans with Openable Windows / Trickle Vents

These systems are by far the most common in Scotland. Working correctly, the systems can be effective at keeping both odour and moisture levels down to acceptable levels, at low capital and running cost. As discussed above, many systems do not operate adequately however, many suffer from being too noisy and heat is not recovered.

Our Guidance vs Conventional Guidance

Generally, there is no guidance offered in relation to ventilation in typical domestic retrofit projects. If extract fans are found not to be working an electrician may notify the site foreman and suggest that the unit is replaced or repaired, but in many retrofit projects access into homes is limited. However, it really is critical that there is an effective ventilation system and the need for one increases if a property is to be better insulated and made more airtight under typical retrofit conditions. Our guidance is simply to ensure that this is the case, and to take proactive measures where necessary.

Preparation & Specification Considerations

- The existing ventilation system should be reviewed in each property. This review should include all extract units (operational, noise, extract flow rate ideally), all transfer routes (usually beneath doors) and all trickle vents or openable windows providing make-up air. Any faulty, stuck or blocked vents should be noted. If this review takes
place at the pre-contract stage, during initial design and costings, then a reasonable indication of cost for any works necessary can be established early. It might make sense, for example, if the review is carried out at the same time as any pre-existing SAP / EPC survey is carried out.

- In a typical dwelling, there should be an extract fan in each wet room, ie each bathroom, toilet, utility room and kitchen. Some properties refurbished in the 1970s and 1980s have extract fans only in the bathroom.
- Some ducting may be required to connect internal rooms to outside and will need to be co-ordinated with other internal works. Where excessive ductwork or core drilling is required it is sometimes possible to connect two or more extract grilles together and use a single extract unit, which then exhausts through a single existing outlet. This can be cheaper and much easier than installing new outlets through roofs and walls at high level.
- Some units can be switched between intermittent and continuous operation. If possible, it is best to switch them to continuous extract because this is more effective and also creates a more stable environment. If the units cannot be altered and are sufficiently old, ineffective or noisy, then it might make sense to upgrade them to new, quiet and effective continuous extract models.
- It is common to hear that occupants have switched off or disconnected fans due to what they perceive as excessive noise. While understandable, it can easily lead to stuffiness, condensation and mould problems and so it is worth avoiding from the outset. The problem is often noted with intermittent type fans which come on at night when going to the toilet. If existing units are considered noisy, this might in itself be a reason to upgrade. Units should be chosen which operate at less than 30 dB. Units are available that operate at 25dB which is the same as whisper. An alternative which reduces noise is to locate the extract fan itself somewhere remote from bedrooms in particular, and duct air to the unit if there is space to do so.

Installation

- The extract unit should be installed according to all relevant guidance including the manufacturer’s instructions. It is important that the installation itself is airtight, it is quite common when investigating air leakage to see gaps around the extract fans.
- All opening windows and or trickle vents should be assessed to ensure that they operate as intended and are easily reached / controlled by the occupants.
- All transfer routes should be checked to ensure that even if partition doors are closed at night, for example, that sufficient air flow remains possible beneath (min. 10mm to all doors). It is worth noting that there are potentially contradictory regulations in properties where there is a central hallway onto which rooms may require fire resistant doorsets. In these cases, the doors themselves are more robust and sealed precisely to resist the passage of fire, but some gaps beneath are considered acceptable and the most common way to adhere to both sets of requirements. Intumescent grilles may also be acceptable being open generally, but closing up in the event of fire.
- A commissioning sheet should be completed by the installer and included as part of the ‘as-built’ drawings and final certificates for services.
Alternatives

- A version of the above is to centralise the extract unit. Although this introduces more ductwork, it enables the fan to be located somewhere (such as an attic or cupboard) where it cannot be heard if noise is a problem.
- An improvement on the above is to introduce an element of demand control. This can involve various measures. One is to introduce humidity-sensitive inlets or trickle vents which open more when humidity is higher, thereby providing greater make-up air when the need is greatest. This can be combined with a variety of sensor-based systems to increase extract rates when conditions suggest, such as in relation to higher humidity, higher CO2 levels and higher temperatures. Demand control does tend to introduce sensors and added complexity but can reduce energy consumption associated with ventilation and makes it much more responsive to actual conditions.

Health & Safety

Beyond the safety aspects of wiring in electrical equipment there are no obvious health or safety risks associated with this kind of work.
4.10 Lighting and Appliances

There are three compelling reasons to look at the efficiency of lighting and electrical appliances in a little more detail when undertaking a retrofit project.

The first is that although the national grid is in the process of becoming ‘de-carbonised’, electricity from the grid is still relatively ‘carbon dense’ that is, it emits more carbon dioxide than most other fuels, and this also tends to make it relatively expensive. The second is that the grid faces considerable pressure at certain times – periods of ‘peak demand’ which creates a range of additional problems surrounding the supply and security of energy in the UK. The more we can do to reduce this pressure the better. Finally, while buildings are, on the whole, becoming more energy efficient, the proliferation of electrical and electronic gadgets, the likely uptake in heat pumps and anticipated electrification of transport mean that actual electricity consumption is likely to increase in the future. Again, anything we can do to ameliorate this is to be welcomed.

Most guidance on this subject tends to centre around changing inefficient bulbs for more efficient bulbs, and possibly considering smart meters. But there is a lot more to the subject than this, so as in the previous chapters, we have chosen to outline some of the issues which impact on electrical efficiency and sustainability in the hope that this will help inform decision making.

Electrical Energy Efficiency

Avoiding the Need for Electricity

As with heating, the simplest way to reduce electrical consumption is not to need it in the first place.

- Go Without
Across the UK individual households and in some places whole villages manage without the mains grid. It is not an option for most, but there are many valuable lessons to be learnt from those who manage this, most of which centre around a profound reduction in the need for electricity in the first place.

- Sunlight
The benefits of daylight and sunlight extend far beyond energy efficiency into aspects of physical and mental health, especially in Scotland with long winters and short days. At a prosaic level however every living room should have adequate levels of daylight and this should be optimised as far as possible to enable occupants to operate without the need for artificial lighting, at least for some parts of the day.

Curtains and blinds should be drawn fully back and arranged so as to avoid obscuring parts of the window if possible and plants externally should be kept back from windows for the same reasons. White window frames will reflect more light than dark brown ones and mirrors internally, and even ponds externally can be used to reflect light deeper into a room. Keeping glass clean of course also improves the penetration of light into a room.

If undertaking a more extensive renovation it may be worth altering or adding windows if a room is too dark. A good rule of thumb is that if
you can see the sky from where you are standing, then there is likely to be sufficient light. Roof lights let in much more light than vertical windows (but also let out more heat) and in some cases it might be worth considering opening up a light well into the centre of a particularly dark building. A much cheaper option is to consider the use of rooms, so that you organise to work or simply be, in the room which receives the greater part of the light throughout the day, thus east facing rooms will be lighter in the morning and west-facing ones lighter in the evenings.

Light coloured finishes internally will significantly affect the overall light levels in a room and while the higher reaches of a window allow light to reach deeper into a room, lower cills also provide a view out onto the garden, if you have one, and these views out carry their own benefits for health and wellbeing. Windows which are too large can lead to overheating, especially in well insulated homes, so an option for external shading and ventilation is important, while glare can be a problem in some cases, when working with a computer screen, for example.

Contextual Efficiency

- Lighting Strategy
Generally lighting is used for three quite distinct reasons. The first is usually termed ‘background’ or ‘ambient’ lighting and simply means that an adequate amount of light fills any given space so that you can move about and do whatever you need to do with sufficient clarity. In a typical room in a house, this is the pendant fitting in the centre of the ceiling.

The second form of lighting is usually termed ‘task lighting’ and is specifically designed to help people undertake a task. The assumption is that the background level of light is insufficient for the task. In working environments task lighting is often a critical aspect of health and safety, whereas in homes, it is more commonly associated with under-cabinet lighting in kitchens which light the worktop, bathroom mirror lamps or bedside lights used when the main light is switched off.

The third form of lighting is usually called ‘accent’ lighting and is used to highlight special features such as a painting on the wall. It is mainly aesthetic and is almost always in the form of spotlighting.

The main thing when aiming to make lighting more efficient is to consider these three strategies and see how the overall energy used can be reduced. The most common tactic is simply to reduce the ambient lighting to a sensible minimum (because this is usually trying to light a large area, it involves more energy), and focus more on task lighting, which can be used to provide adequate light precisely where it is needed. Because it usually means lighting a smaller area and from closer at hand, it typically uses less energy and can be switched off as soon as that task is finished.

In smaller spaces, one tactic sometimes employed is to use task and accent lighting to create different ‘pools’ or ‘rooms’ of light, thereby giving the sense of different spaces within the whole. This can be more effective at compensating for a smaller room than simply providing lots of light. As ever, it is the context and the way light is used, rather than simply the amount.

Another aspect of this is the way a light is designed. Some lighting is designed to be ‘direct’, whereas other lighting is designed to be ‘indirect’ meaning that it is used more to light a surface (such as a feature stone wall). Clearly direct lighting is more efficient because all of the light created is gained for the space, but again, context is everything.
Many light fittings are fitted with shades. These range from being highly decorative to plain and simple, from obscuring most of the light to being reflective and directional. Clearly, lighter shades which do not obscure the light are more efficient, while reflective inner surfaces can help direct light. LED and halogen bulbs tend to come with reflective surfaces by default and keeping shades clean also improves the amount of light gained.

Component Efficiency

In this section we discuss the intrinsic efficiency of the main components used, namely light bulbs and appliances generally.

- **Bulbs**

The best known tactic to reduce energy consumption in lighting and electrical is to replace bulbs with more energy efficient versions. This is one of the very few areas where there is very little disagreement or complexity.

Traditional incandescent (or tungsten filament) bulbs are now almost entirely phased out so for the majority of purposes we are left with halogen bulbs, compact fluorescent (CFL) bulbs and light emitting diode (LED) bulbs. Halogen bulbs are versions of the old incandescent bulbs, but are more efficient and last longer due to the presence of halogen gas within the bulb which protects the tungsten filament.

LED bulbs use around a sixth of the energy of traditional incandescent bulbs and around three-quarters of the energy of CFL bulbs for the same light output. They last perhaps 25 times longer than incandescent bulbs and at least three times longer than CFLs. There is no start-up time as there has been with CFLs and repeated switching on and off does not shorten the lifespan of them as with CFLs. LEDs do not contain mercury, lead and cadmium and they are smart-home compatible, dimmable and capable of replicating a number of colours and colour temperatures. Apart from personal preference, there is no reason not to use LED for almost every purpose.

- **Appliances**

Over the course of its lifespan, the cost of running most appliances outstrips the initial cost, so there is every reason to buy more energy efficient models, even if they are initially more expensive. All appliances are now sold along with an energy efficiency label with a rating from more to less energy efficient.

It is important to note that energy ratings are given to products based on their size category. Thus a small fridge may well use less energy than a better rated fridge which is much larger so it is also important to look at the overall energy consumption figures which are printed on the label. The Energy Saving Trust and a number of consumer websites offer good advice on the energy consumption of appliances and how to use them efficiently.

- **Standby**

Most appliances can be left unused but still be switched on and in the ‘standby’ mode continue to use electricity. The amounts used are very small, recent EU legislation means that these cannot be more than 1W each, but the problem is that most households have very many items, often with many of them left on standby 24 hours a day. Lots of small amounts over a long time makes for a significant number and it is
estimated that the average UK household spends around £30 powering appliances simply left in standby mode.

There are a number of products available to help cut down on standby electricity consumption. Some allow for many items to be turned off in one go, but it is important to remember that some items rely on an internal clock which makes turning them off problematic.

People and Usage

Everyone has seen posters reminding them to turn lights off and whilst the issue of lights left on overnight in offices remains a sizeable problem, it is much less of an issue in homes. It will probably always be useful to periodically remind people to think about the issue, but beyond public-funded education drives, there are a number of ways we can help cut down unnecessary usage of lighting in particular.

- **Awareness**

 Being aware of electricity being used in real time is perhaps one of the most effective ways of raising awareness of the issue. It is also helpful to relate real time information to historical consumption (“we used less this week than last week”) and to relate it all to cost. There are a range of products on the market now which allow occupants to see how much electricity is being used, and a variety of tactics employed to encourage a reduction in use overall.

 An interesting option is to place the meter readings of different properties together, so that these can be immediately compared. Natural competitive tendencies take over and conservation of energy can become motivating! This may not be appropriate in all situations but has been employed to good effect in student residences, for example.

 A more mundane example of raising awareness is to include neon indicators where there is a risk of lights or other appliances being left on. A good example is for attic lights, where the switch is in the space below, the neon indicator meaning that the light is on in the loft above where this might not otherwise be detectable. Neon or LED lights are often indicators of phantom loads too where appliances are partially switched off.

- **Controls**

 Broadly speaking there are four types of control for lighting. The first is manual (the good old-fashioned switch), along with three types of automated control: daylight or ambient light-related, occupancy-related and timer-based. These control options can be extremely helpful in more commercial situations but tend not to be needed much in homes. It is worth considering however where the likelihood of lights being left on is possible.

 In larger rooms, it is worth considering arranging the switching of lights so that on brighter days, those lights nearer the windows can be switched off separately from those further away. Too often all lights are put onto one circuit making this differentiation impossible.

 Many lights can be dimmed, but in many cases the light output is reduced without reducing the electrical input accordingly. Where dimmable lighting is to be employed, it is worth ensuring that this will lead to an associated reduction in electricity consumption.
- Maintenance
Most of us have at some point cleaned a light fitting and found it covered in dust. Dust and other dirt covering light bulbs and associated fittings is generally assumed to reduce the efficiency of lighting systems by up to 10%. Thus it stands to reason that keeping all light fittings in your home clean will improve the efficiency of the system and provide more light for the same cost. The same is true of all appliances but the circumstances vary too greatly to note more than the fact that appliances kept clean and free of dirt that could affect performance makes good sense.

Wider Sustainability Issues

There are other issues at stake beyond energy efficiency and in the following section we briefly introduce a few of these to consider when choosing electrical appliances and lighting.

- Access for Upgrading
Electrical and communications items are among those most frequently upgraded and so it makes sense to enable upgrading of equipment and associated cabling with as little disruption as possible. Providing service voids, or running cables within conduits, and providing easy access to these means the inevitable upgrading will be simpler, cheaper and involve less disruption and waste in the long-term.

- Embodied Toxicity
Although there were compelling energy efficiency arguments for the drive to change traditional tungsten filament ('incandescent') bulbs to compact fluorescent bulbs, there was a downside which is the fluorescent bulbs contain small amounts of mercury and other toxic substances. Another issue raised was the potential to cause headaches due to the flicker of certain, older fluorescent bulbs. Both of these problems can now be avoided by choosing LED bulbs which are also more energy efficient.

- Longevity
Our consumption of ‘consumables’ is increasing both in quantity and rapidity with considerable implications for the planet. Longevity is perhaps one of the main selling point of the most recent LED bulbs in comparison with older bulb types. Generally with appliances the more you pay, the greater the quality and robustness meaning the items should last longer. The benefits of buying longer lasting items is not just in financial savings to the customer, but a reduction in the waste created.

- ELFs and EMFs
All electrical items when plugged in emit an electric field (ELF) and also emit an electro-magnetic field (EMF) when they are switched on. These fields are very small, but there are many of them and we are surrounded by them. Much larger fields are emitted by high voltage power cables. A small number of people believe that these fields are hazardous to health. Evidence of this is scant, but does exist, and there is evidence to link child leukaemia, in particular, with proximity to electric and electro-magnetic fields. There is also evidence of risks to health associated with the very high fields associated with high voltage power lines.

It is difficult to be certain that health risks beyond these can be linked to electric cabling within homes, but there is enough to suggest a possible cause and so it makes sense to adopt a precautionary approach where possible, for those who are concerned. The two key factors appear to be proximity and size of field. The closer you are, and the larger the field, the more potential concern. Practically, it is possible to instal cabling within sheathing which provides a shield from the effects of the field.
- Colour and Light
Colour therapy is a form of alternative medicine which links health issues to colour, usually in combination with light. While this is not for everyone, there is increasing evidence of the health benefits of different types of light with the underlying principle that light which most closely mimics daylight brings the greatest benefit. With people spending on average 90% of their time indoors, this becomes more of an issue than in previous generations and for those with seasonally affective disorder (SAD) or similar issues.

Different bulbs have different ‘temperatures’ measured in Kelvin, so that ‘warmer, softer’ light has a temperature of around 2700K while ‘cool, blue’ light tends to be around 6500K. Daylight is closer to the cool, blue light and daylight bulbs can therefore be used to ameliorate the effects of being indoors for long periods. It should be noted that daylight becomes noticeably ‘warmer’ in the evenings and therefore these sorts of light sources should be employed then. ‘Evening’ light settings are often found on electronic devices and this is something that can be readily employed by those interested in the subject. A development of the ‘daylight bulb’ is the ‘full spectrum bulb’ which takes the principle further and although more expensive, will be of greater interest to those concerned about this issue.

- Noise
One of the most irritating things in houses can be the background noise of certain fittings. Ventilation systems are often switched off due to the noise they make while equipment like fridges and washing machines can be very noisy.

Switching off ventilation can lead to issues with condensation and mould while switching off a fridge is unlikely to be an option and so it pays to consider the noise of items in the house before purchasing them. Some items can be used when not at home (like a washing machine) and others can be moved into adjacent rooms, or somehow insulated, however this is not possible in many cases. Most appliances are sold with labels which will confirm the noise made and if it is likely to be an issue, then it will make sense to buy a quieter model.

- LSF Cabling
Low smoke and fumes (LSF) cabling is available which as its name suggests, emits less, and less hazardous smoke in a fire. Most cabling is made with PVC as a sheath and there are known risks to health from PVC when it burns so a sensible precaution is to buy, or specify LSF cabling where feasible.

Renewables
For many people, renewables are the symbol of sustainability – having a solar panel on your roof instantly makes a home an ‘ecohome’ – whereas they are in fact just one of many pieces of the jigsaw that need to be considered. The efficiencies, and therefore environmental / financial benefits of renewables are constantly improving but it remains the case that they should always be considered only after all other avenues for reducing demand have been exhausted.

There are three main ways of generating electricity renewable, by harnessing the power of the sun, wind and rivers – using photovoltaic panels, wind turbines and hydropower plants respectively. Combined heat and power (CHP) is sometimes considered a renewable and is discussed briefly in the previous section. Wind power and hydropower are not usually included as part of retrofit projects and are not considered here.
but solar electric power – photovoltaic – is sometimes an integral part of a renovation project and is considered a little below.

- Photovoltaics

Photovoltaic panels produce direct current (DC) electricity from light which is then converted to alternating current (AC) by an inverter before it can be used in the building. Some applications (especially those associated with caravans and yachts) can use the DC without inversion but for most purposes there is an inverter required.

Improving technology, ever-increasing economies of scale and the addition of grant support has meant that the environmental and financial viability of photovoltaic (PV) panels has been improving over the last few years such that there is now a stronger case for considering PV. However the recent reductions in grant support means that at present (2018), the case is marginal for most properties.

Systems come in several forms: some can be integrated into the roof or glazing of a building but most come as panels which are separately mounted on roofs or on the ground.

Clearly any system is most efficient when facing as close to due south as possible and at an angle of between 30° and 50°. Panels which are closer to 30° will collect more energy when the sun is higher in the summer, but far less in winter, whereas panels closer to vertical will collect more light during winter and at the extreme ends of the day, but efficiencies drop off in summer. Panels produce electricity in relation to the amount of light they receive and so on cloudy days, they generally produce around a quarter of the output from sunny days. It is worth emphasising that shading of the array can significantly affect the performance of the system, so systems should be carefully designed to avoid shading, from adjacent dormers or nearby buildings or trees.

Increasingly it is possible to source PV units which resemble conventional slates or tiles and this is a valuable development in situations where ‘unsightly’ installations might be unwelcome, such as in conservation areas, or on listed or otherwise attractive older buildings and contexts.

A complication for larger scale clients such as housing associations or council housing departments when undertaking retrofit projects is how to divide up the benefits of the ‘free’ electricity. In many cases, the electricity generated is simply sold to the grid and the financial benefits split evenly in preference to managing the complex technical aspects of separately metering the consumption of the PV generated electricity to each household.

In every case, it is important to get quotes from a number of companies who will also provide estimations of output and a scheme design to determine the most appropriate layout of the panels. The companies will also advise on the best inverter, storage and grid connection options which are an important part of the overall installation. Unless the project is off-grid, installations usually connect to the main grid, effectively using it as a ‘battery’ to offload excess production, drawing it back when needed at other times. Domestic-scale batteries have recently become widely available, enabling householders to store electricity on site. In most domestic situations it is unlikely these will be viable from a financial point of view, but the tariffs available for both buying and selling back power are in constant flux, so up-to-date guidance on this is always required.
5 – RESOURCES AND GLOSSARY

Organisations

Many of the organisations listed below have a huge range of advice and downloadable guidance, not all of which agrees with guidance by other organisations. For this document, we have drawn most heavily from the STBA (Sustainable Traditional Buildings Alliance) and Historic Environment Scotland, both of whom offer a wide range of supporting documentation.

ASSOCIATION FOR THE CONSERVATION OF ENERGY (ACE).
https://www.ukace.org
Working to support energy efficiency through policy and investment across the UK.

ASSOCIATION FOR ENVIRONMENT CONSCIOUS BUILDING (AECB).
https://www.aecb.net
Network promoting sustainable building.

BUILDING RESEARCH ESTABLISHMENT (BRE).
https://bregroup.com
Huge range of research, reports, the developers of SAP and EPCs, BREEAM and much more.

CARBON TRUST.
https://www.carbontrust.com/home/
Focus mainly on business and commercial sector, but wide range of useful information and support.

CENTRE FOR SUSTAINABLE ENERGY (CSE).
https://www.cse.org.uk
Independent national charity focussed on energy and sustainability, helpful guidance for householders.

CHANGWORKS.
http://www.changeworks.org.uk
Sustainable development charity, good publications on domestic energy efficiency.

CHARTERED INSTITUTE OF BUILDING SERVICE ENGINEERS (CIBSE).
https://www.cibse.org
Supporting best practice in building services engineering, lots of helpful guidance.

CONSTRUCTION INDUSTRY RESEARCH AND INFORMATION ASSOCIATION (CIRIA).
https://www.ciria.org
Supports collaborative work, innovation and research across the construction industry.

ENERGY ACTION SCOTLAND.
http://www.eas.org.uk
National fuel poverty charity.

ENERGY SAVING TRUST (EST).
http://www.energysavingtrust.org.uk
Domestic energy advice agency, lots of information.
References

Historic England.
https://historicengland.org.uk
The public body that cares for England’s historic environment.

Home Energy Scotland.
http://www.energysavingtrust.org.uk/scotland/home-energy-scotland
Scottish Government free support for households, delivered via the Energy Saving Trust.

Good Homes Alliance (GHA).
http://goodhomes.org.uk
An organisation dedicated to high quality and sustainable housing, new and refurbished.

Historic Environment Scotland (HES).
https://www.historicenvironment.scot
Primarily conservation based, but acknowledging in many cases the need to address sustainability in its wider sense and a good deal of helpful primary research in the Technical Papers in particular.

Institute for Sustainability.
https://www.instituteforsustainability.co.uk
Now defunct, but above webpage retains links to several useful documents on retrofit.

Institute for Historic Building Conservation (IHBC).
https://www.ihbc.org.uk
Building Conservation

The National Trust for Scotland.
https://www.nts.org.uk
Scottish members organisation linked to the National Trust across the UK and heavily engaged in conservation of buildings, places, monuments and landscapes.

Retrofit Scotland.
http://www.retrofitscotland.org
A collaboration between a number of organisations focussing on retrofit in Scotland with a range of useful case studies and other resources.

Royal Incorporation of Architects in Scotland (RIAS)
https://www.rias.org.uk
Professional body representing most Architects in Scotland, provides accreditation in acknowledged expertise in both conservation and sustainable design practice.

Royal Institute of Chartered Surveyors (RICS)
https://www.rics.org/uk/
Professional body promoting and enforcing best practice in the many areas of surveying.

Scottish Ecological Design Association (SEDA).
https://www.seda.uk.net
A members’ organisation with good events across Scotland and a number of downloadable documents, all with sustainability at their core.

Society for the Protection of Ancient Buildings (SPAB).
https://www.spab.org.uk
Organisation dedicated to the future of old buildings.
SUSTAINABLE TRADITIONAL BUILDINGS ALLIANCE (STBA).
http://stbauk.org
A valuable source of information and guidance which often challenges current orthodoxy on retrofit and construction practice.

UNITED KINGDOM CENTRE FOR MOISTURE IN BUILDINGS (UKCMB).
http://www.ukcmb.org
A collaborative group dedicated to moisture issues, including decay and health in buildings.

General Guides

Baeli, Marion: Residential Retrofit. 20 Case Studies (2013)
British Standards Institute. PAS 2035: 2019 Specification for the energy retrofit of domestic buildings (in draft form at time of publication, due to be published 2019.)
ICOMOS: The Venice Charter (1964/5) (www.icomos.org)
Insall, D: Living buildings (2008)

Miscellaneous Relevant

BRE BR262 Thermal insulation: avoiding risks (2002)
BRE IP1/00 Air tightness in UK dwellings (2000)
Changeworks: Solid Wall Insulation in Scotland (2012)
DECC (Palmer, J and Cooper, I) Great Britain's Housing Energy Fact File (2011)
Environmental Change Institute 40% House (2005)
Sustainable Dunblane: ‘Improving energy efficiency in ‘Hard to Treat’ houses (2011)
Glossary

Adaptive comfort: Adaptive thermal comfort is a theory that suggests a human connection to the outdoors and control over the immediate environment allow them to adapt to (and even prefer) a wider range of thermal conditions than is generally considered comfortable.

Air permeability: The leakage of air (m³.h⁻¹) in or out of a building space, per unit area (m²) of envelope (including ground floor area) at a reference pressure of 50 Pa between inside and outside the building.

Airtightness: A term describing the leakiness of a building. The smaller the leakage for a given pressure difference across a building, the tighter the building envelope.

Airtightness layer: A layer built in to the external envelope to minimise air infiltration/exfiltration. It may consist of a wide range of materials (for example, sealants, gaskets, glazing or membranes) and should be continuous to be effective.

Breather membrane: A water-resistant sheet which allows transmission of water vapour, but which provides resistance to airflow.

Breathable: usually used to describe the vapour (not air) permeability of materials or constructions

Building Performance Evaluation (BPE): The process of evaluating how a building performs in use, and can be carried out on both new and existing buildings. It attempts to identify energy inefficiencies, other potentially unintended consequences and occupant dissatisfaction that result from not performing in accordance with design intentions.

Climate change: A change in global or regional climate patterns, in particular a change apparent from the mid to late 20th century onwards and attributed largely to the increased levels of atmospheric carbon dioxide produced by the use of fossil fuels.

Condensation: The conversion of a vapour or gas to a liquid, in practice this tends to be water which collects as droplets on a cold surface when humid air is in contact with it.

Conduction: heat flow through solid materials by microscopic collisions of particles and movement of electrons within at the material.

Convection: heat flow through liquids and gases (usually air when referring to buildings).

Cross ventilation: Air circulation in a room that is caused by outside breezes or wind. It is achieved by placing vents or window on opposite facing walls in a room. Also described as wind driven ventilation.

Draughtproofing: Filling gaps between opening parts of components and their frames.
Energy Performance Certificate (EPC): All domestic and commercial buildings in the UK available to buy or rent must have an Energy Performance Certificate (EPC). EPCs tell you how energy efficient a building is and give it a rating from A (very efficient) to G (inefficient). EPCs let the person who will use the building know how costly it will be to heat and light, and what its carbon dioxide emissions are likely to be. The EPC will also state what the energy-efficiency rating could be if improvements are made, and highlights cost-effective ways to achieve a better rating.

Fuel poverty: A household is said to be in fuel poverty when its members cannot afford to keep adequately warm at a reasonable cost, given their income.

Infiltration: Infiltration is the unintentional or accidental introduction of outside air into a building, typically through cracks in the building envelope and through use of doors for passage. Infiltration is sometimes called air leakage. The leakage of room air out of a building, intentionally or not, is called exfiltration.

Lambda: see thermal conductivity

Natural ventilation: The movement (caused by wind and outside temperature) of outdoor air into a room or space through intentionally provided openings, such as windows and doors and non-powered ventilators.

Pend: A Scottish term referring to a passageway that passes through a building, often from a street through to a courtyard or ‘back court’, and typically designed for vehicular rather than pedestrian access. A pend is distinct from a vennel or a close, as it has rooms directly above it, whereas vennels and closes tend not to be covered over and are typically passageways between separate buildings.

Psi value: see thermal bridge

Radiation (of heat): in this document refers to short wave radiation of infrared electromagnetic radiation

Relative humidity: the amount of water vapour present in air expressed as a percentage of the amount needed for saturation at the same temperature.

Stack effect / ventilation: the upward movement of air through openings in a building fabric due to thermal buoyancy and/or negative pressure generated by the wind over the roof.

Thermal bridge (psi): A thermal bridge, also called a cold bridge, is an area or component of an object which has higher thermal conductivity than the surrounding materials, creating a path of least resistance for heat transfer. The heat loss associated with these thermal bridges is expressed as a linear thermal transmittance (Ψ-value) or ‘psi-value’.

Thermal bypass: Thermal bypass is heat transfer that exploits air movement transfer between two regions but not necessarily air movement that penetrates all the way through the building fabric.

Thermal Conductivity: Thermal conductivity λ (lambda) is defined as ability of material to transmit heat and it is measured in watts per square metre of surface area for a temperature gradient of 1 K per unit thickness of 1 m.
Thermal mass: In building design, thermal mass is a property of the mass of a building which enables it to store heat, providing “inertia” against temperature fluctuations. It is sometimes also known as the thermal flywheel effect.

Thermal transmittance (U-value): Measure of how readily heat flows through a component or set of materials (such as a wall), expressed in W/mK.

Thermographic camera: A camera sensitive to the infrared part of the spectrum, which can be used to ‘see’ locally cooled areas on the internal surfaces or heated areas on internal and external surfaces of the envelope of a building. Sometimes refereed to as an Infrared camera.

Thermography: The use of cameras sensitive to infrared radiation to identify thermal weak spots in the envelope of the building and to help identify air leakage paths through gaps and cracks in the building.

U-value (see thermal transmittance)

Vapour control layer (VCL): A layer mostly, but not completely, impervious to water vapour and usually enclosing an occupied space.

Ventilation: Supplying or removing air, by natural or mechanical means, to or from a space.

Water vapour: Water in its gaseous form.
In this guide, we describe ten ways in which those involved in the retrofit and renovation of Scotland’s homes can improve upon current practice, achieving better energy performance while simultaneously gaining wider sustainability benefits. We look at a more balanced approach that values energy efficiency equally with the health of occupants and the long-term durability of buildings, and that considers the reality of buildings as built, rather than the theoretical models which tend to inform policy and practice. We look at how we can better engage with people, and learn from established conservation practice to help with the practicalities of working with existing buildings.

This guide will be of interest to anyone working with existing buildings, from those working in government, housing associations and councils, as well as architects, surveyors, builders and those wanting to refurbish their own homes. The guide includes detailed information and drawings of exactly how parts of a building can be upgraded along with a commentary on practical issues to look out for, and why our guidance differs from most conventional wisdom on the subject.

The guide was supported by The Pebble Trust and Scottish Ecological Design Association (SEDA)